12 research outputs found

    Frame difference families and resolvable balanced incomplete block designs

    Full text link
    Frame difference families, which can be obtained via a careful use of cyclotomic conditions attached to strong difference families, play an important role in direct constructions for resolvable balanced incomplete block designs. We establish asymptotic existences for several classes of frame difference families. As corollaries new infinite families of 1-rotational (pq+1,p+1,1)(pq+1,p+1,1)-RBIBDs over Fp+×Fq+\mathbb{F}_{p}^+ \times \mathbb{F}_{q}^+ are derived, and the existence of (125q+1,6,1)(125q+1,6,1)-RBIBDs is discussed. We construct (v,8,1)(v,8,1)-RBIBDs for v∈{624,1576,2976,5720,5776,10200,14176,24480}v\in\{624,1576,2976,5720,5776,10200,14176,24480\}, whose existence were previously in doubt. As applications, we establish asymptotic existences for an infinite family of optimal constant composition codes and an infinite family of strictly optimal frequency hopping sequences.Comment: arXiv admin note: text overlap with arXiv:1702.0750

    Hadamard partitioned difference families and their descendants

    Get PDF
    If DD is a (4u2,2u2−u,u2−u)(4u^2,2u^2-u,u^2-u) Hadamard difference set (HDS) in GG, then {G,G∖D}\{G,G\setminus D\} is clearly a (4u2,[2u2−u,2u2+u],2u2)(4u^2,[2u^2-u,2u^2+u],2u^2) partitioned difference family (PDF). Any (v,K,λ)(v,K,\lambda)-PDF will be said of Hadamard-type if v=2λv=2\lambda as the one above. We present a doubling construction which, starting from any such PDF, leads to an infinite class of PDFs. As a special consequence, we get a PDF in a group of order 4u2(2n+1)4u^2(2n+1) and three block-sizes 4u2−2u4u^2-2u, 4u24u^2 and 4u2+2u4u^2+2u, whenever we have a (4u2,2u2−u,u2−u)(4u^2,2u^2-u,u^2-u)-HDS and the maximal prime power divisors of 2n+12n+1 are all greater than 4u2+2u4u^2+2u

    New 22-designs from strong difference families

    Full text link
    Strong difference families are an interesting class of discrete structures which can be used to derive relative difference families. Relative difference families are closely related to 22-designs, and have applications in constructions for many significant codes, such as optical orthogonal codes and optical orthogonal signature pattern codes. In this paper, with a careful use of cyclotomic conditions attached to strong difference families, we improve the lower bound on the asymptotic existence results of (Fp×Fq,Fp×{0},k,λ)(\mathbb{F}_{p}\times \mathbb{F}_{q},\mathbb{F}_{p}\times \{0\},k,\lambda)-DFs for k∈{p,p+1}k\in\{p,p+1\}. We improve Buratti's existence results for 22-(13q,13,λ)(13q,13,\lambda) designs and 22-(17q,17,λ)(17q,17,\lambda) designs, and establish the existence of seven new 22-(v,k,λ)(v,k,\lambda) designs for (v,k,λ)∈{(694,7,2),(1576,8,1),(2025,9,1),(765,9,2),(1845,9,2),(459,9,4)(v,k,\lambda)\in\{(694,7,2),(1576,8,1),(2025,9,1),(765,9,2),(1845,9,2),(459,9,4), (783,9,4)}(783,9,4)\}.Comment: Version 1 is named "Improved cyclotomic conditions leading to new 2-designs: the use of strong difference families". Major revision according to the referees' comment

    Partitioned difference families: the storm has not yet passed

    Full text link
    Two years ago, we alarmed the scientific community about the large number of bad papers in the literature on {\it zero difference balanced functions}, where direct proofs of seemingly new results are presented in an unnecessarily lengthy and convoluted way. Indeed, these results had been proved long before and very easily in terms of difference families. In spite of our report, papers of the same kind continue to proliferate. Regrettably, a further attempt to put the topic in order seems unavoidable. While some authors now follow our recommendation of using the terminology of {\it partitioned difference families}, their methods are still the same and their results are often trivial or even wrong. In this note, we show how a very recent paper of this type can be easily dealt with

    Partitioned difference families: the storm has not yet passed

    Get PDF
    Two years ago, we alarmed the scientific community about the large number of bad papers in the literature on zero difference balanced functions, where direct proofs of seemingly new results are presented in an unnecessarily lengthy and convoluted way. Indeed, these results had been proved long before and very easily in terms of difference families. In spite of our report, papers of the same kind continue to proliferate. Regrettably, a further attempt to put the topic in order seems unavoidable. While some authors now follow our recommendation of using the terminology of partitioned difference families, their methods are still the same and their results are often trivial or even wrong. In this note, we show how a very recent paper of this type can be easily dealt with

    New Z-cyclic triplewhist frames and triplewhist tournament designs

    Get PDF
    AbstractTriplewhist tournaments are a specialization of whist tournament designs. The spectrum for triplewhist tournaments on v players is nearly complete. It is now known that triplewhist designs do not exist for v=5,9,12,13 and do exist for all other v≡0,1(mod4) except, possibly, v=17. Much less is known concerning the existence of Z-cyclic triplewhist tournaments. Indeed, there are many open questions related to the existence of Z-cyclic whist designs. A (triple)whist design is said to be Z-cyclic if the players are elements in Zm∪A where m=v, A=∅ when v≡1(mod4) and m=v-1, A={∞} when v≡0(mod4) and it is further required that the rounds also be cyclic in the sense that the rounds can be labelled, say, R1,R2,… in such a way that Rj+1 is obtained by adding +1(modm) to every element in Rj. The production of Z-cyclic triplewhist designs is particularly challenging when m is divisible by any of 5,9,11,13,17. Here we introduce several new triplewhist frames and use them to construct new infinite families of triplewhist designs, many for the case of m being divisible by at least one of 5,9,11,13,17
    corecore