15,327 research outputs found

    Hidden attractors in fundamental problems and engineering models

    Full text link
    Recently a concept of self-excited and hidden attractors was suggested: an attractor is called a self-excited attractor if its basin of attraction overlaps with neighborhood of an equilibrium, otherwise it is called a hidden attractor. For example, hidden attractors are attractors in systems with no equilibria or with only one stable equilibrium (a special case of multistability and coexistence of attractors). While coexisting self-excited attractors can be found using the standard computational procedure, there is no standard way of predicting the existence or coexistence of hidden attractors in a system. In this plenary survey lecture the concept of self-excited and hidden attractors is discussed, and various corresponding examples of self-excited and hidden attractors are considered

    Dynamics of delay induced composite multi-scroll attractor and its application in encryption

    Get PDF
    This work was supported in part by NSFC (60804040, 61172070), Key Program of Nature Science Foundation of Shaanxi Province (2016ZDJC-01), Innovative Research Team of Shaanxi Province(2013KCT-04), Fok Ying Tong Education Foundation Young Teacher Foundation(111065), Chao Bai was supported by Excellent Ph.D. research fund (310-252071603) at XAUT.Peer reviewedPostprin

    Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion

    Full text link
    In this tutorial, we discuss self-excited and hidden attractors for systems of differential equations. We considered the example of a Lorenz-like system derived from the well-known Glukhovsky--Dolghansky and Rabinovich systems, to demonstrate the analysis of self-excited and hidden attractors and their characteristics. We applied the fishing principle to demonstrate the existence of a homoclinic orbit, proved the dissipativity and completeness of the system, and found absorbing and positively invariant sets. We have shown that this system has a self-excited attractor and a hidden attractor for certain parameters. The upper estimates of the Lyapunov dimension of self-excited and hidden attractors were obtained analytically.Comment: submitted to EP

    Reduction of dimension for nonlinear dynamical systems

    Get PDF
    We consider reduction of dimension for nonlinear dynamical systems. We demonstrate that in some cases, one can reduce a nonlinear system of equations into a single equation for one of the state variables, and this can be useful for computing the solution when using a variety of analytical approaches. In the case where this reduction is possible, we employ differential elimination to obtain the reduced system. While analytical, the approach is algorithmic, and is implemented in symbolic software such as {\sc MAPLE} or {\sc SageMath}. In other cases, the reduction cannot be performed strictly in terms of differential operators, and one obtains integro-differential operators, which may still be useful. In either case, one can use the reduced equation to both approximate solutions for the state variables and perform chaos diagnostics more efficiently than could be done for the original higher-dimensional system, as well as to construct Lyapunov functions which help in the large-time study of the state variables. A number of chaotic and hyperchaotic dynamical systems are used as examples in order to motivate the approach.Comment: 16 pages, no figure
    • …
    corecore