241,777 research outputs found

    Applying an Operational Formal Method to Safety-Critical Systems

    Get PDF
    Despite thirty years of study by the academic community, industry has not embraced the systematic usage of formal methods. To address this concern, a formal method is proposed which possesses many of the qualities that practitioners have listed as lacking from current formal methods: inclusion of both a specification and verification model, a tabular notation that only requires knowledge of first-order logic, support for both composition and decomposition, application throughout the software life-cycle, and tool support. The presentation includes several applications to safety-critical software systems. Keywords and Phrases Formal methods, specification, trace-based systems, software development, concurrency, verification

    Armanesia Blockchain System: Blockchain and IFPS-Based Archive System Prototype

    Get PDF
    Document integrity is critical to public trust in archives management. Armanesia is an innovative research project aims to develop prototype of information systems to support the management of digital archives based on blockchain technology. The project uses blockchain technology to record verification, immutability, and other metadata derived from various types of digital records. In this system, archives are permanently stored through peer-to-peer distribution and consensus verification without the need for a third party. The continuum archive cycle is based on Armanesia workflow infrastructure. The prototype is built through open-source technologies such as IPFS (Interplanetary File System) for blockchain-enabled file systems to design a system prototype using the SDLC (System Development Life Cycle) method. Armanesia technology can be applied for both public and private blockchain ecosystems. &nbsp

    International Space Station Passive Thermal Control System Top Ten Lessons-Learned

    Get PDF
    Final document not an Abstract attached. The International Space Station (ISS) has been on-orbit for nearly 20 years, and there have been numerous technical challenges along the way from design to assembly to on-orbit anomalies and repairs. The Passive Thermal Control System (PTCS) management team has been a key player in successfully dealing with these challenges. The PTCS team performs thermal analysis in support of design and verification, launch and assembly constraints, integration, sustaining engineering, failure response, and model validation. This analysis is a significant body of work and provides a unique opportunity to compile a wealth of real world engineering and analysis knowledge and the corresponding lessons-learned. The PTCS lessons encompass the full life cycle of flight hardware from design to on-orbit performance and sustaining engineering. These lessons can provide significant insight for new projects and programs. Key areas to be presented include thermal model fidelity, verification methods, analysis uncertainty, and operations support

    Software engineering environment tool set integration

    Get PDF
    Space Transportation System Division (STSD) Engineering has a program to promote excellence within the engineering function. This program resulted in a capital funded facility based on a VAX cluster called the Rockwell Operational Engineering System (ROSES). The second phase of a three phase plan to establish an integrated software engineering environment for ROSES is examined. It discusses briefly phase one which establishes the basic capability for a modern software development environment to include a tool set, training and standards. Phase two is a tool set integration. The tool set is primarily off-the-shelf tools acquired through vendors or government agencies (public domain). These tools were placed into categories of software development. These categories are: requirements, design, and construction support; verification and validation support; and software management support. The integration of the tool set is being performed through concept prototyping and development of tools specifically designed to support the life cycle and provide transition from one phase to the next

    Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS - a collection of Technical Notes Part 1

    Get PDF
    This report provides an introduction and overview of the Technical Topic Notes (TTNs) produced in the Towards Identifying and closing Gaps in Assurance of autonomous Road vehicleS (Tigars) project. These notes aim to support the development and evaluation of autonomous vehicles. Part 1 addresses: Assurance-overview and issues, Resilience and Safety Requirements, Open Systems Perspective and Formal Verification and Static Analysis of ML Systems. Part 2: Simulation and Dynamic Testing, Defence in Depth and Diversity, Security-Informed Safety Analysis, Standards and Guidelines

    On Practical Verification of Processes

    Get PDF
    The integration of a formal process theory with a practically usable notation is not straightforward, but it is necessary for practical verification of process specifications. Given such an intermediate language, a verification process that gives useful feedback is not trivial either: Model checkers are not powerful enough to deal with object models, and theorem provers provide insu#cient feedback and are not certain to find a proof

    An Adaptive Design Methodology for Reduction of Product Development Risk

    Full text link
    Embedded systems interaction with environment inherently complicates understanding of requirements and their correct implementation. However, product uncertainty is highest during early stages of development. Design verification is an essential step in the development of any system, especially for Embedded System. This paper introduces a novel adaptive design methodology, which incorporates step-wise prototyping and verification. With each adaptive step product-realization level is enhanced while decreasing the level of product uncertainty, thereby reducing the overall costs. The back-bone of this frame-work is the development of Domain Specific Operational (DOP) Model and the associated Verification Instrumentation for Test and Evaluation, developed based on the DOP model. Together they generate functionally valid test-sequence for carrying out prototype evaluation. With the help of a case study 'Multimode Detection Subsystem' the application of this method is sketched. The design methodologies can be compared by defining and computing a generic performance criterion like Average design-cycle Risk. For the case study, by computing Average design-cycle Risk, it is shown that the adaptive method reduces the product development risk for a small increase in the total design cycle time.Comment: 21 pages, 9 figure
    • …
    corecore