155 research outputs found

    Weak bisimulation for coalgebras over order enriched monads

    Full text link
    The paper introduces the notion of a weak bisimulation for coalgebras whose type is a monad satisfying some extra properties. In the first part of the paper we argue that systems with silent moves should be modelled coalgebraically as coalgebras whose type is a monad. We show that the visible and invisible part of the functor can be handled internally inside a monadic structure. In the second part we introduce the notion of an ordered saturation monad, study its properties, and show that it allows us to present two approaches towards defining weak bisimulation for coalgebras and compare them. We support the framework presented in this paper by two main examples of models: labelled transition systems and simple Segala systems.Comment: 44 page

    Generalized Vietoris Bisimulations

    Full text link
    We introduce and study bisimulations for coalgebras on Stone spaces [14]. Our notion of bisimulation is sound and complete for behavioural equivalence, and generalizes Vietoris bisimulations [4]. The main result of our paper is that bisimulation for a Stone\mathbf{Stone} coalgebra is the topological closure of bisimulation for the underlying Set\mathbf{Set} coalgebra

    A Coalgebraic View on Reachability

    Full text link
    Coalgebras for an endofunctor provide a category-theoretic framework for modeling a wide range of state-based systems of various types. We provide an iterative construction of the reachable part of a given pointed coalgebra that is inspired by and resembles the standard breadth-first search procedure to compute the reachable part of a graph. We also study coalgebras in Kleisli categories: for a functor extending a functor on the base category, we show that the reachable part of a given pointed coalgebra can be computed in that base category

    Efficient and Modular Coalgebraic Partition Refinement

    Full text link
    We present a generic partition refinement algorithm that quotients coalgebraic systems by behavioural equivalence, an important task in system analysis and verification. Coalgebraic generality allows us to cover not only classical relational systems but also, e.g. various forms of weighted systems and furthermore to flexibly combine existing system types. Under assumptions on the type functor that allow representing its finite coalgebras in terms of nodes and edges, our algorithm runs in time O(mlogn)\mathcal{O}(m\cdot \log n) where nn and mm are the numbers of nodes and edges, respectively. The generic complexity result and the possibility of combining system types yields a toolbox for efficient partition refinement algorithms. Instances of our generic algorithm match the run-time of the best known algorithms for unlabelled transition systems, Markov chains, deterministic automata (with fixed alphabets), Segala systems, and for color refinement.Comment: Extended journal version of the conference paper arXiv:1705.08362. Beside reorganization of the material, the introductory section 3 is entirely new and the other new section 7 contains new mathematical result

    Coalgebra Encoding for Efficient Minimization

    Full text link
    Recently, we have developed an efficient generic partition refinement algorithm, which computes behavioural equivalence on a state-based system given as an encoded coalgebra, and implemented it in the tool CoPaR. Here we extend this to a fully fledged minimization algorithm and tool by integrating two new aspects: (1) the computation of the transition structure on the minimized state set, and (2) the computation of the reachable part of the given system. In our generic coalgebraic setting these two aspects turn out to be surprisingly non-trivial requiring us to extend the previous theory. In particular, we identify a sufficient condition on encodings of coalgebras, and we show how to augment the existing interface, which encapsulates computations that are specific for the coalgebraic type functor, to make the above extensions possible. Both extensions have linear run time

    Well-Pointed Coalgebras

    Get PDF
    For endofunctors of varieties preserving intersections, a new description of the final coalgebra and the initial algebra is presented: the former consists of all well-pointed coalgebras. These are the pointed coalgebras having no proper subobject and no proper quotient. The initial algebra consists of all well-pointed coalgebras that are well-founded in the sense of Osius and Taylor. And initial algebras are precisely the final well-founded coalgebras. Finally, the initial iterative algebra consists of all finite well-pointed coalgebras. Numerous examples are discussed e.g. automata, graphs, and labeled transition systems

    Topo-Bisimulations are Coalgebraic

    Get PDF
    We show that the topological interpretation of the modal logic S4 can be reformulated using a special kind of coalgebras for the filter functor. Thus the topological semantics is subsumed in coalgebraic semantics. Moreover, the relational notion of topo-bisimulation can be characterized via spans of open and continuous maps of topological spaces or via spans of coalgebras morphisms
    corecore