32,305 research outputs found

    Spontaneous emission control in high-extraction efficiency plasmonic crystals

    Full text link
    We experimentally and theoretically investigate exciton-field coupling for the surface plasmon polariton (SPP) in waveguide-confined (WC) anti-symmetric modes of hexagonal plasmonic crystals in InP-TiO-Au-TiO-Si heterostructures. The radiative decay time of the InP-based transverse magnetic (TM)-strained multi-quantum well (MQW) coupled to the SPP modes is observed to be 2.9-3.7 times shorter than that of a bare MQW wafer. Theoretically we find that 80 % of the enhanced PL is emitted into SPP modes, and 17 % of the enhanced luminescence is redirected into WC-anti-symmetric modes. In addition to the direct coupling of the excitons to the plasmonic modes, this demonstration is also useful for the development of high-temperature SPP lasers, the development of highly integrated photo-electrical devices, or miniaturized biosensors.Comment: Spontaneous emission control in high-extraction efficiency plasmonic crystal

    Solvable PT-symmetric model with a tunable interspersion of non-merging levels

    Full text link
    We study the spectrum in such a PT-symmetric square well of a diameter L where the "strength of the non-Hermiticity" is controlled by the two parameters, viz., by an imaginary coupling ig and by the distance d of its onset from the origin. We solve this problem and confirm that the spectrum is discrete and real in a non-empty interval of g. Surprisingly, a specific distinction between the bound states is found in their asymptotic stability/instability with respect to an unlimited growth of g. In our model, all of the low-lying levels remain asymptotically unstable at the small d and finite L while only the stable levels survive for d near L or in the purely imaginary well with infinite L. In between these two extremes, an unusual and tunable, variable pattern of the interspersed "robust" and "fragile" subspectra of the real levels is obtained.Comment: final version: 33 pages (plus the old 8 figures of version 1

    Zero forcing number, constrained matchings and strong structural controllability

    Full text link
    The zero forcing number is a graph invariant introduced to study the minimum rank of the graph. In 2008, Aazami proved the NP-hardness of computing the zero forcing number of a simple undirected graph. We complete this NP-hardness result by showing that the non-equivalent problem of computing the zero forcing number of a directed graph allowing loops is also NP-hard. The rest of the paper is devoted to the strong controllability of a networked system. This kind of controllability takes into account only the structure of the interconnection graph, but not the interconnection strengths along the edges. We provide a necessary and sufficient condition in terms of zero forcing sets for the strong controllability of a system whose underlying graph is a directed graph allowing loops. Moreover, we explain how our result differs from a recent related result discovered by Monshizadeh et al. Finally, we show how to solve the problem of finding efficiently a minimum-size input set for the strong controllability of a self-damped system with a tree-structure.Comment: Submitted as a journal paper in May 201

    Photon engineering for quantum information processing

    Full text link
    We study distinguishing information in the context of quantum interference involving more than one parametric downconversion (PDC) source and in the context of polarization-entangled photon pairs based on PDC. We arrive at specific design criteria for two-photon sources so that when used as part of complex optical systems, such as photon-based quantum information processing schemes, distinguishing information between the photons is eliminated guaranteeing high visibility interference. We propose practical techniques which lead to suitably engineered two-photon states that can be realistically implemented with available technology. Finally, we study an implementation of the nonlinear-sign shift (NS) logic gate with PDC sources and show the effect of distinguishing information on the performance of the gate.Comment: 23 pages, 13 figures. submitted to Quantum Information & Computatio

    Coherent perfect absorption in photonic structures

    Get PDF
    The ability to drive a system with an external input is a fundamental aspect of light-matter interaction. The coherent perfect absorption (CPA) phenomenon extends to the general multibeam interference phenomenology the well known critical coupling concepts. This interferometric control of absorption can be employed to reach full delivery of optical energy to nanoscale systems such as plasmonic nanoparticles, and multi-port interference can be used to enhance the absorption of a nanoscale device when it is embedded in a strongly scattering system, with potential applications to nanoscale sensing. Here we review the two-port CPA in reference to photonic structures which can resonantly couple to the external fields. A revised two-port theory of CPA is illustrated, which relies on the Scattering Matrix formalism and is valid for all linear two-port systems with reciprocity. Through a semiclassical approach, treating two-port critical coupling conditions in a non-perturbative regime, it is demonstrated that the strong coupling regime and the critical coupling condition can indeed coexist; in this situation, termed strong critical coupling, all the incoming energy is converted into polaritons. Experimental results are presented, which clearly display the elliptical trace of absorption as function of input unbalance in a thin metallo-dielectric metamaterial, and verify polaritonic CPA in an intersubband-polariton photonic-crystal membrane resonator. Concluding remarks discuss the future perspectives of CPA with photonic structures.Comment: arXiv admin note: substantial text overlap with arXiv:1605.0890
    • …
    corecore