49 research outputs found

    Defensive Dropout for Hardening Deep Neural Networks under Adversarial Attacks

    Full text link
    Deep neural networks (DNNs) are known vulnerable to adversarial attacks. That is, adversarial examples, obtained by adding delicately crafted distortions onto original legal inputs, can mislead a DNN to classify them as any target labels. This work provides a solution to hardening DNNs under adversarial attacks through defensive dropout. Besides using dropout during training for the best test accuracy, we propose to use dropout also at test time to achieve strong defense effects. We consider the problem of building robust DNNs as an attacker-defender two-player game, where the attacker and the defender know each others' strategies and try to optimize their own strategies towards an equilibrium. Based on the observations of the effect of test dropout rate on test accuracy and attack success rate, we propose a defensive dropout algorithm to determine an optimal test dropout rate given the neural network model and the attacker's strategy for generating adversarial examples.We also investigate the mechanism behind the outstanding defense effects achieved by the proposed defensive dropout. Comparing with stochastic activation pruning (SAP), another defense method through introducing randomness into the DNN model, we find that our defensive dropout achieves much larger variances of the gradients, which is the key for the improved defense effects (much lower attack success rate). For example, our defensive dropout can reduce the attack success rate from 100% to 13.89% under the currently strongest attack i.e., C&W attack on MNIST dataset.Comment: Accepted as conference paper on ICCAD 201

    Combining Adversarial Guarantees and Stochastic Fast Rates in Online Learning

    Get PDF
    We consider online learning algorithms that guarantee worst-case regret rates in adversarial environments (so they can be deployed safely and will perform robustly), yet adapt optimally to favorable stochastic environments (so they will perform well in a variety of settings of practical importance). We quantify the friendliness of stochastic environments by means of the well-known Bernstein (a.k.a. generalized Tsybakov margin) condition. For two recent algorithms (Squint for the Hedge setting and MetaGrad for online convex optimization) we show that the particular form of their data-dependent individual-sequence regret guarantees implies that they adapt automatically to the Bernstein parameters of the stochastic environment. We prove that these algorithms attain fast rates in their respective settings both in expectation and with high probability

    Generalized Mixability via Entropic Duality

    Get PDF
    Mixability is a property of a loss which characterizes when constant regret is possible in the game of prediction with expert advice. We show that a key property of mixability generalizes, and the exp\exp and log\log operations present in the usual theory are not as special as one might have thought. In doing so we introduce a more general notion of Φ\Phi-mixability where Φ\Phi is a general entropy (\ie, any convex function on probabilities). We show how a property shared by the convex dual of any such entropy yields a natural algorithm (the minimizer of a regret bound) which, analogous to the classical Aggregating Algorithm, is guaranteed a constant regret when used with Φ\Phi-mixable losses. We characterize which Φ\Phi have non-trivial Φ\Phi-mixable losses and relate Φ\Phi-mixability and its associated Aggregating Algorithm to potential-based methods, a Blackwell-like condition, mirror descent, and risk measures from finance. We also define a notion of ``dominance'' between different entropies in terms of bounds they guarantee and conjecture that classical mixability gives optimal bounds, for which we provide some supporting empirical evidence

    The contribution of statistical physics to evolutionary biology

    Full text link
    Evolutionary biology shares many concepts with statistical physics: both deal with populations, whether of molecules or organisms, and both seek to simplify evolution in very many dimensions. Often, methodologies have undergone parallel and independent development, as with stochastic methods in population genetics. We discuss aspects of population genetics that have embraced methods from physics: amongst others, non-equilibrium statistical mechanics, travelling waves, and Monte-Carlo methods have been used to study polygenic evolution, rates of adaptation, and range expansions. These applications indicate that evolutionary biology can further benefit from interactions with other areas of statistical physics, for example, by following the distribution of paths taken by a population through time.Comment: 18 pages, 3 figures, glossary. Accepted in Trend in Ecology and Evolution (to appear in print in August 2011
    corecore