327 research outputs found

    Visually grounded learning of keyword prediction from untranscribed speech

    Full text link
    During language acquisition, infants have the benefit of visual cues to ground spoken language. Robots similarly have access to audio and visual sensors. Recent work has shown that images and spoken captions can be mapped into a meaningful common space, allowing images to be retrieved using speech and vice versa. In this setting of images paired with untranscribed spoken captions, we consider whether computer vision systems can be used to obtain textual labels for the speech. Concretely, we use an image-to-words multi-label visual classifier to tag images with soft textual labels, and then train a neural network to map from the speech to these soft targets. We show that the resulting speech system is able to predict which words occur in an utterance---acting as a spoken bag-of-words classifier---without seeing any parallel speech and text. We find that the model often confuses semantically related words, e.g. "man" and "person", making it even more effective as a semantic keyword spotter.Comment: 5 pages, 3 figures, 5 tables; small updates, added link to code; accepted to Interspeech 201

    Towards an automatic speech recognition system for use by deaf students in lectures

    Get PDF
    According to the Royal National Institute for Deaf people there are nearly 7.5 million hearing-impaired people in Great Britain. Human-operated machine transcription systems, such as Palantype, achieve low word error rates in real-time. The disadvantage is that they are very expensive to use because of the difficulty in training operators, making them impractical for everyday use in higher education. Existing automatic speech recognition systems also achieve low word error rates, the disadvantages being that they work for read speech in a restricted domain. Moving a system to a new domain requires a large amount of relevant data, for training acoustic and language models. The adopted solution makes use of an existing continuous speech phoneme recognition system as a front-end to a word recognition sub-system. The subsystem generates a lattice of word hypotheses using dynamic programming with robust parameter estimation obtained using evolutionary programming. Sentence hypotheses are obtained by parsing the word lattice using a beam search and contributing knowledge consisting of anti-grammar rules, that check the syntactic incorrectness’ of word sequences, and word frequency information. On an unseen spontaneous lecture taken from the Lund Corpus and using a dictionary containing "2637 words, the system achieved 815% words correct with 15% simulated phoneme error, and 73.1% words correct with 25% simulated phoneme error. The system was also evaluated on 113 Wall Street Journal sentences. The achievements of the work are a domain independent method, using the anti- grammar, to reduce the word lattice search space whilst allowing normal spontaneous English to be spoken; a system designed to allow integration with new sources of knowledge, such as semantics or prosody, providing a test-bench for determining the impact of different knowledge upon word lattice parsing without the need for the underlying speech recognition hardware; the robustness of the word lattice generation using parameters that withstand changes in vocabulary and domain
    • …
    corecore