6,924 research outputs found

    Extracting Implicit Social Relation for Social Recommendation Techniques in User Rating Prediction

    Full text link
    Recommendation plays an increasingly important role in our daily lives. Recommender systems automatically suggest items to users that might be interesting for them. Recent studies illustrate that incorporating social trust in Matrix Factorization methods demonstrably improves accuracy of rating prediction. Such approaches mainly use the trust scores explicitly expressed by users. However, it is often challenging to have users provide explicit trust scores of each other. There exist quite a few works, which propose Trust Metrics to compute and predict trust scores between users based on their interactions. In this paper, first we present how social relation can be extracted from users' ratings to items by describing Hellinger distance between users in recommender systems. Then, we propose to incorporate the predicted trust scores into social matrix factorization models. By analyzing social relation extraction from three well-known real-world datasets, which both: trust and recommendation data available, we conclude that using the implicit social relation in social recommendation techniques has almost the same performance compared to the actual trust scores explicitly expressed by users. Hence, we build our method, called Hell-TrustSVD, on top of the state-of-the-art social recommendation technique to incorporate both the extracted implicit social relations and ratings given by users on the prediction of items for an active user. To the best of our knowledge, this is the first work to extend TrustSVD with extracted social trust information. The experimental results support the idea of employing implicit trust into matrix factorization whenever explicit trust is not available, can perform much better than the state-of-the-art approaches in user rating prediction

    Information Filtering on Coupled Social Networks

    Full text link
    In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm based on the coupled social networks, which considers the effects of both social influence and personalized preference. Experimental results on two real datasets, \emph{Epinions} and \emph{Friendfeed}, show that hybrid pattern can not only provide more accurate recommendations, but also can enlarge the recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals occupy the core position of the online system. This work may shed some light on the in-depth understanding structure and function of coupled social networks

    Social Collaborative Retrieval

    Full text link
    Socially-based recommendation systems have recently attracted significant interest, and a number of studies have shown that social information can dramatically improve a system's predictions of user interests. Meanwhile, there are now many potential applications that involve aspects of both recommendation and information retrieval, and the task of collaborative retrieval---a combination of these two traditional problems---has recently been introduced. Successful collaborative retrieval requires overcoming severe data sparsity, making additional sources of information, such as social graphs, particularly valuable. In this paper we propose a new model for collaborative retrieval, and show that our algorithm outperforms current state-of-the-art approaches by incorporating information from social networks. We also provide empirical analyses of the ways in which cultural interests propagate along a social graph using a real-world music dataset.Comment: 10 page

    The Web as an Adaptive Network: Coevolution of Web Behavior and Web Structure

    No full text
    Much is known about the complex network structure of the Web, and about behavioral dynamics on the Web. A number of studies address how behaviors on the Web are affected by different network topologies, whilst others address how the behavior of users on the Web alters network topology. These represent complementary directions of influence, but they are generally not combined within any one study. In network science, the study of the coupled interaction between topology and behavior, or state-topology coevolution, is known as 'adaptive networks', and is a rapidly developing area of research. In this paper, we review the case for considering the Web as an adaptive network and several examples of state-topology coevolution on the Web. We also review some abstract results from recent literature in adaptive networks and discuss their implications for Web Science. We conclude that adaptive networks provide a formal framework for characterizing processes acting 'on' and 'of' the Web, and offers potential for identifying general organizing principles that seem otherwise illusive in Web Scienc

    Data Portraits and Intermediary Topics: Encouraging Exploration of Politically Diverse Profiles

    Full text link
    In micro-blogging platforms, people connect and interact with others. However, due to cognitive biases, they tend to interact with like-minded people and read agreeable information only. Many efforts to make people connect with those who think differently have not worked well. In this paper, we hypothesize, first, that previous approaches have not worked because they have been direct -- they have tried to explicitly connect people with those having opposing views on sensitive issues. Second, that neither recommendation or presentation of information by themselves are enough to encourage behavioral change. We propose a platform that mixes a recommender algorithm and a visualization-based user interface to explore recommendations. It recommends politically diverse profiles in terms of distance of latent topics, and displays those recommendations in a visual representation of each user's personal content. We performed an "in the wild" evaluation of this platform, and found that people explored more recommendations when using a biased algorithm instead of ours. In line with our hypothesis, we also found that the mixture of our recommender algorithm and our user interface, allowed politically interested users to exhibit an unbiased exploration of the recommended profiles. Finally, our results contribute insights in two aspects: first, which individual differences are important when designing platforms aimed at behavioral change; and second, which algorithms and user interfaces should be mixed to help users avoid cognitive mechanisms that lead to biased behavior.Comment: 12 pages, 7 figures. To be presented at ACM Intelligent User Interfaces 201
    • …
    corecore