3,297 research outputs found

    17 - Nature-inspired Coordination for Complex Distributed Systems

    Get PDF
    Originating from closed parallel systems, coordination models and technologies gained in expressive power so to deal with open distributed systems. In particular, nature-inspired models of coordination emerged in the last decade as the most effective approaches to tackle the complexity of pervasive, intelligent, and self-* systems. In this talk we survey the most relevant nature-inspired coordination models, discuss the main open issues, and explore the trends for their future development

    A survey on engineering approaches for self-adaptive systems (extended version)

    Full text link
    The complexity of information systems is increasing in recent years, leading to increased effort for maintenance and configuration. Self-adaptive systems (SASs) address this issue. Due to new computing trends, such as pervasive computing, miniaturization of IT leads to mobile devices with the emerging need for context adaptation. Therefore, it is beneficial that devices are able to adapt context. Hence, we propose to extend the definition of SASs and include context adaptation. This paper presents a taxonomy of self-adaptation and a survey on engineering SASs. Based on the taxonomy and the survey, we motivate a new perspective on SAS including context adaptation

    Nature-Inspired Coordination Models: Current Status and Future Trends

    Get PDF
    Coordination models and languages are meant to provide abstractions and mechanisms to harness the space of interaction as one of the foremost sources of complexity in computational systems. Nature-inspired computing aims at understanding the mechanisms and patterns of complex natural systems in order to bring their most desirable features to computational systems. Thus, the promise of nature-inspired coordination models is to prove themselves fundamental in the design of complex computational systems|such as intelligent, knowledge-intensive, pervasive, adaptive, and self-organising ones. In this paper, we survey the most relevant nature-inspired coordination models in the literature, focussing in particular on tuple-based models, and foresee the most interesting research trends in the field

    Engineering Pervasive Service Ecosystems: The SAPERE approach

    Get PDF
    Emerging pervasive computing services will typically involve a large number of devices and service components cooperating together in an open and dynamic environment. This calls for suitable models and infrastructures promoting spontaneous, situated, and self-adaptive interactions between components. SAPERE (Self-Aware Pervasive Service Ecosystems) is a general coordination framework aimed at facilitating the decentralized and situated execution of self-organizing and self-adaptive pervasive computing services. SAPERE adopts a nature-inspired approach, in which pervasive services are modeled and deployed as autonomous individuals in an ecosystem of other services and devices, all of which interact in accord to a limited set of coordination laws, or eco-laws. In this article, we present the overall rationale underlying SAPERE and its reference architecture. We introduce the eco-laws--based coordination model and show how it can be used to express and easily enforce general-purpose self-organizing coordination patterns. The middleware infrastructure supporting the SAPERE model is presented and evaluated, and the overall advantages of SAPERE are discussed in the context of exemplary use cases

    Extending the Social Construction of Technology (SCOT) Framework to the Digital World

    Get PDF
    The rapid rise of digital technologies forces us to re-think our current conceptualization of Information Technologies (IT) where recent theoretical approaches like complexity, evolutionary and network theories tend to remain silent on human (managerial and organizational) choices underlying the development of digital technologies. In this Research-in-Progress paper, we first describe the Social Construction of Technology (SCOT) framework, originating in the 1980s. We then propose extending the SCOT framework along four dimensions in order to ensure its suitability for the digital world: (1) Technology – focus towards digital technologies, (2) Interaction – focus on interpersonal, person-technology, technology-technology and technology-physical environment interactions (3) Social Groups – focus on networked individualism, and (4) Context – focus on socio-digital context. We conclude by proposing to co-develop and -test the extended framework as a joint effort across several academic disciplines in order to use it when conducting research on the social construction of digital ecosystems
    • …
    corecore