10 research outputs found

    Musical Representation of Sound in Computer-Aided Composition: A Visual Programming Framework

    Get PDF
    International audienceThis article addresses the problem of the representation and creation of sound by synthesis in the context of music composition, as seen from the computer-aided composition (CAC) perspective. An important theoretical basis of this work is the concept of computer modelling, discussed in relation to the notions of sound representation and music composition. Modelling sound as a signal is extended to the musical domain by considering as an alternative modelling composition as an activity that aims to produce sounds. The visual programming paradigm is adopted for the representation and conception of the composition models, and therefore for the musical representation of sounds. A composition framework dedicated to electro-acoustic music and sound synthesis integrated in the OpenMusic CAC environment is presented. Temporal issues are also discussed and are the object of specific developments

    Sonifying Urban Rhythms: Towards the spatio-temporal composition of the urban environment

    Get PDF
    This thesis is concerned with the composition of the urban rhythms generated by urban design and planning. It recognises the temporal limitations of the graphic urban masterplan, with its tendency of being static and singular in the composition of urban experience. Thus it proposes the integration of rhythm into the urban design and planning process, with the aim to improve the temporal quality of urban design. In order to represent these urban rhythms, as designed in the graphic masterplan, we propose their sonification. A Sonified Urban Masterplan (SUM) tool was developed, allowing the sonification of multiple layers of maps (raster or vector images) along a number of paths of interest. An urban sonic code was then developed in order to map the relevant graphic urban parameters into sound parameters. This sonification strategy was applied to the city of Paris as a case study, producing a sonified set of maps whose composition could be ‘listened’ to over time. Temporal issues concerning human movement, transport infrastructure, activity distribution, and the structuring of urban form and design elements could be represented and heard. We then investigated the potential of the SUM tool as a design and planning tool. We explored how sound could be used to inform the composition of urban form in both time and space, in order to generate the urban rhythms we may desire to experience. Thus through the integration of sonification in urban design and planning, this thesis permits the spatio-­‐temporal representation and composition of urban form. It allows urban designers and planners to compose future urban rhythms and improve the temporal quality of our urban environments. Furthermore, the potential of this tool in other fields has also be recognized, for example in music and the composition of multi-­‐layered open graphic scores

    Musical Cities

    Get PDF
    Musical Cities represents an innovative approach to scholarly research and dissemination. A digital and interactive 'book', it explores the rhythms of our cities, and the role they play in our everyday urban lives, through the use of sound and music. Sara Adhitya first discusses why we should listen to urban rhythms in order to design more liveable and sustainable cities, before demonstrating how we can do so through various acoustic communication techniques. Using audio-visual examples, Musical Cities takes the ‘listener’ on an interactive journey, revealing how sound and music can be used to represent, compose, perform and interact with the city. Through case studies of urban projects developed in Paris, Perth, Venice and London, Adhitya demonstrates how the power of music, and the practice of listening, can help us to compose more accessible, inclusive, engaging, enjoyable, and ultimately more sustainable cities

    Biomechanical Modelling of Musical Performance: A Case Study of the Guitar

    Get PDF
    Merged with duplicate record 10026.1/2517 on 07.20.2017 by CS (TIS)Computer-generated musical performances are often criticised for being unable to match the expressivity found in performances by humans. Much research has been conducted in the past two decades in order to create computer technology able to perform a given piece music as expressively as humans, largely without success. Two approaches have been often adopted to research into modelling expressive music performance on computers. The first focuses on sound; that is, on modelling patterns of deviations between a recorded human performance and the music score. The second focuses on modelling the cognitive processes involved in a musical performance. Both approaches are valid and can complement each other. In this thesis we propose a third complementary approach, focusing on the guitar, which concerns the physical manipulation of the instrument by the performer: a biomechanical approach. The essence of this thesis is a study on capturing, analyzing and modelling information about motor and biomechanical processes of guitar performance. The focus is on speed, precision, and force of a guitarist's left-hand. The overarching questions behind our study are: 1) Do unintentional actions originating from motor and biomechanical functions during musical performance contribute a material "human feel" to the performance? 2) Would it be possible determine and quantify such unintentional actions? 3) Would it be possible to model and embed such information in a computer system? The contributionst o knowledgep ursued in this thesis include: a) An unprecedented study of guitar mechanics, ergonomics, and playability; b) A detailed study of how the human body performs actions when playing the guitar; c) A methodologyt o formally record quantifiable data about such actionsin performance; d) An approach to model such information, and e) A demonstration of how the above knowledge can be embeddedin a system for music performance

    Proceedings of the 7th Sound and Music Computing Conference

    Get PDF
    Proceedings of the SMC2010 - 7th Sound and Music Computing Conference, July 21st - July 24th 2010

    Musical Cities

    Get PDF
    Musical Cities represents an innovative approach to scholarly research and dissemination. A digital and interactive 'book', it explores the rhythms of our cities, and the role they play in our everyday urban lives, through the use of sound and music. Sara Adhitya first discusses why we should listen to urban rhythms in order to design more liveable and sustainable cities, before demonstrating how we can do so through various acoustic communication techniques. Using audio-visual examples, Musical Cities takes the ‘listener’ on an interactive journey, revealing how sound and music can be used to represent, compose, perform and interact with the city. Through case studies of urban projects developed in Paris, Perth, Venice and London, Adhitya demonstrates how the power of music, and the practice of listening, can help us to compose more accessible, inclusive, engaging, enjoyable, and ultimately more sustainable cities

    Musical Cities

    Get PDF
    Musical Cities represents an innovative approach to scholarly research and dissemination. A digital and interactive 'book', it explores the rhythms of our cities, and the role they play in our everyday urban lives, through the use of sound and music. Sara Adhitya first discusses why we should listen to urban rhythms in order to design more liveable and sustainable cities, before demonstrating how we can do so through various acoustic communication techniques. Using audio-visual examples, Musical Cities takes the ‘listener’ on an interactive journey, revealing how sound and music can be used to represent, compose, perform and interact with the city. Through case studies of urban projects developed in Paris, Perth, Venice and London, Adhitya demonstrates how the power of music, and the practice of listening, can help us to compose more accessible, inclusive, engaging, enjoyable, and ultimately more sustainable cities
    corecore