287,857 research outputs found

    Exact sampling and counting for fixed-margin matrices

    Full text link
    The uniform distribution on matrices with specified row and column sums is often a natural choice of null model when testing for structure in two-way tables (binary or nonnegative integer). Due to the difficulty of sampling from this distribution, many approximate methods have been developed. We will show that by exploiting certain symmetries, exact sampling and counting is in fact possible in many nontrivial real-world cases. We illustrate with real datasets including ecological co-occurrence matrices and contingency tables.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1131 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org). arXiv admin note: text overlap with arXiv:1104.032

    Number Counting among Students with Mild Intellectual Disability in Penang: A Case Study

    Get PDF
    AbstractThis study examined number counting among students with mild intellectual disability. This study also investigates their skills as well as the difficulty they are facing on number counting. This is a quantitative research and had involved thirty participants as respondents. All respondents were selected through purposive sampling technique. Results of this study showed that students with mild intellectual disability have understanding of number counting using counting instructional models. Results of this study also showed that female students with mild intellectual disability have the higher mean scores compared to male students on number counting using n+1>n rule counting instructional model. On the other hand, male students with mild intellectual disability have higher mean score achievement on number counting using enumeration instructional model than female. It is shown from the result of the study that there is no significant difference in the skills of n + 1 > n rule counting instructional model among male and female students with mild intellectual disability. Also there is no significant difference among male and female in the skills of enumeration counting instructional model

    Efficient Sampling Algorithms for Approximate Motif Counting in Temporal Graph Streams

    Full text link
    A great variety of complex systems, from user interactions in communication networks to transactions in financial markets, can be modeled as temporal graphs consisting of a set of vertices and a series of timestamped and directed edges. Temporal motifs are generalized from subgraph patterns in static graphs which consider edge orderings and durations in addition to topologies. Counting the number of occurrences of temporal motifs is a fundamental problem for temporal network analysis. However, existing methods either cannot support temporal motifs or suffer from performance issues. Moreover, they cannot work in the streaming model where edges are observed incrementally over time. In this paper, we focus on approximate temporal motif counting via random sampling. We first propose two sampling algorithms for temporal motif counting in the offline setting. The first is an edge sampling (ES) algorithm for estimating the number of instances of any temporal motif. The second is an improved edge-wedge sampling (EWS) algorithm that hybridizes edge sampling with wedge sampling for counting temporal motifs with 33 vertices and 33 edges. Furthermore, we propose two algorithms to count temporal motifs incrementally in temporal graph streams by extending the ES and EWS algorithms referred to as SES and SEWS. We provide comprehensive analyses of the theoretical bounds and complexities of our proposed algorithms. Finally, we perform extensive experimental evaluations of our proposed algorithms on several real-world temporal graphs. The results show that ES and EWS have higher efficiency, better accuracy, and greater scalability than state-of-the-art sampling methods for temporal motif counting in the offline setting. Moreover, SES and SEWS achieve up to three orders of magnitude speedups over ES and EWS while having comparable estimation errors for temporal motif counting in the streaming setting.Comment: 27 pages, 11 figures; overlapped with arXiv:2007.1402

    Counting and Sampling from Markov Equivalent DAGs Using Clique Trees

    Full text link
    A directed acyclic graph (DAG) is the most common graphical model for representing causal relationships among a set of variables. When restricted to using only observational data, the structure of the ground truth DAG is identifiable only up to Markov equivalence, based on conditional independence relations among the variables. Therefore, the number of DAGs equivalent to the ground truth DAG is an indicator of the causal complexity of the underlying structure--roughly speaking, it shows how many interventions or how much additional information is further needed to recover the underlying DAG. In this paper, we propose a new technique for counting the number of DAGs in a Markov equivalence class. Our approach is based on the clique tree representation of chordal graphs. We show that in the case of bounded degree graphs, the proposed algorithm is polynomial time. We further demonstrate that this technique can be utilized for uniform sampling from a Markov equivalence class, which provides a stochastic way to enumerate DAGs in the equivalence class and may be needed for finding the best DAG or for causal inference given the equivalence class as input. We also extend our counting and sampling method to the case where prior knowledge about the underlying DAG is available, and present applications of this extension in causal experiment design and estimating the causal effect of joint interventions

    Algorithmic Pirogov-Sinai theory

    Get PDF
    We develop an efficient algorithmic approach for approximate counting and sampling in the low-temperature regime of a broad class of statistical physics models on finite subsets of the lattice Zd\mathbb Z^d and on the torus (Z/nZ)d(\mathbb Z/n \mathbb Z)^d. Our approach is based on combining contour representations from Pirogov-Sinai theory with Barvinok's approach to approximate counting using truncated Taylor series. Some consequences of our main results include an FPTAS for approximating the partition function of the hard-core model at sufficiently high fugacity on subsets of Zd\mathbb Z^d with appropriate boundary conditions and an efficient sampling algorithm for the ferromagnetic Potts model on the discrete torus (Z/nZ)d(\mathbb Z/n \mathbb Z)^d at sufficiently low temperature
    • …
    corecore