3,879 research outputs found

    Mightyl: A compositional translation from mitl to timed automata

    Get PDF
    Metric Interval Temporal Logic (MITL) was first proposed in the early 1990s as a specification formalism for real-time systems. Apart from its appealing intuitive syntax, there are also theoretical evidences that make MITL a prime real-time counterpart of Linear Temporal Logic (LTL). Unfortunately, the tool support for MITL verification is still lacking to this day. In this paper, we propose a new construction from MITL to timed automata via very-weak one-clock alternating timed automata. Our construction subsumes the well-known construction from LTL to BĂĽchi automata by Gastin and Oddoux and yet has the additional benefits of being compositional and integrating easily with existing tools. We implement the construction in our new tool MightyL and report on experiments using Uppaal and LTSmin as back-ends

    From Timed Automata to Logic - and Back

    Get PDF
    One of the most successful techniques for automatic verification is thatof model checking. For finite automata there exist since long extremelyefficient model-checking algorithms, and in the last few years these algorithms have been made applicable to the verification of real-time automata using the region-techniques of Alur and Dill.In this paper, we continue this transfer of existing techniques from thesetting of finite (untimed) automata to that of timed automata. In particular, a timed logic L is put forward, which is sufficiently expressive that we for any timed automaton may construct a single characteristic L formula uniquely characterizing the automaton up to timed bisimilarity. Also, we prove decidability of the satisfiability problem for L with respect to given bounds on the number of clocks and constants of the timed automata to be constructed. None of these results have as yet been succesfully accounted for in the presence of time

    Timed-Automata-Based Verification of MITL over Signals

    Get PDF
    It has been argued that the most suitable semantic model for real-time formalisms is the non-negative real line (signals), i.e. the continuous semantics, which naturally captures the continuous evolution of system states. Existing tools like UPPAAL are, however, based on omega-sequences with timestamps (timed words), i.e. the pointwise semantics. Furthermore, the support for logic formalisms is very limited in these tools. In this article, we amend these issues by a compositional translation from Metric Temporal Interval Logic (MITL) to signal automata. Combined with an emptiness-preserving encoding of signal automata into timed automata, we obtain a practical automata-based approach to MITL model-checking over signals. We implement the translation in our tool MightyL and report on case studies using LTSmin as the back-end

    LNCS

    Get PDF
    We solve the offline monitoring problem for timed propositional temporal logic (TPTL), interpreted over dense-time Boolean signals. The variant of TPTL we consider extends linear temporal logic (LTL) with clock variables and reset quantifiers, providing a mechanism to specify real-time constraints. We first describe a general monitoring algorithm based on an exhaustive computation of the set of satisfying clock assignments as a finite union of zones. We then propose a specialized monitoring algorithm for the one-variable case using a partition of the time domain based on the notion of region equivalence, whose complexity is linear in the length of the signal, thereby generalizing a known result regarding the monitoring of metric temporal logic (MTL). The region and zone representations of time constraints are known from timed automata verification and can also be used in the discrete-time case. Our prototype implementation appears to outperform previous discrete-time implementations of TPTL monitoring

    On the decidability and complexity of Metric Temporal Logic over finite words

    Full text link
    Metric Temporal Logic (MTL) is a prominent specification formalism for real-time systems. In this paper, we show that the satisfiability problem for MTL over finite timed words is decidable, with non-primitive recursive complexity. We also consider the model-checking problem for MTL: whether all words accepted by a given Alur-Dill timed automaton satisfy a given MTL formula. We show that this problem is decidable over finite words. Over infinite words, we show that model checking the safety fragment of MTL--which includes invariance and time-bounded response properties--is also decidable. These results are quite surprising in that they contradict various claims to the contrary that have appeared in the literature

    Verification of Timed Automata Using Rewrite Rules and Strategies

    Full text link
    ELAN is a powerful language and environment for specifying and prototyping deduction systems in a language based on rewrite rules controlled by strategies. Timed automata is a class of continuous real-time models of reactive systems for which efficient model-checking algorithms have been devised. In this paper, we show that these algorithms can very easily be prototyped in the ELAN system. This paper argues through this example that rewriting based systems relying on rules and strategies are a good framework to prototype, study and test rather efficiently symbolic model-checking algorithms, i.e. algorithms which involve combination of graph exploration rules, deduction rules, constraint solving techniques and decision procedures

    MTL-Model Checking of One-Clock Parametric Timed Automata is Undecidable

    Full text link
    Parametric timed automata extend timed automata (Alur and Dill, 1991) in that they allow the specification of parametric bounds on the clock values. Since their introduction in 1993 by Alur, Henzinger, and Vardi, it is known that the emptiness problem for parametric timed automata with one clock is decidable, whereas it is undecidable if the automaton uses three or more parametric clocks. The problem is open for parametric timed automata with two parametric clocks. Metric temporal logic, MTL for short, is a widely used specification language for real-time systems. MTL-model checking of timed automata is decidable, no matter how many clocks are used in the timed automaton. In this paper, we prove that MTL-model checking for parametric timed automata is undecidable, even if the automaton uses only one clock and one parameter and is deterministic.Comment: In Proceedings SynCoP 2014, arXiv:1403.784
    • …
    corecore