206 research outputs found

    06251 Abstracts Collection -- Multi-Robot Systems: Perception, Behaviors, Learning, and Action

    Get PDF
    From 19.06.06 to 23.06.06, the Dagstuhl Seminar 06251 ``Multi-Robot Systems: Perception, Behaviors, Learning, and Action\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Microsoft robotics soccer challenge : movement optimization of a quadruped robot

    Get PDF
    Estágio realizado na Universidade de Aveiro e orientado pelo Prof. Doutor Nuno LauTese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    IMPLEMENTATION OF A LOCALIZATION-ORIENTED HRI FOR WALKING ROBOTS IN THE ROBOCUP ENVIRONMENT

    Get PDF
    This paper presents the design and implementation of a human–robot interface capable of evaluating robot localization performance and maintaining full control of robot behaviors in the RoboCup domain. The system consists of legged robots, behavior modules, an overhead visual tracking system, and a graphic user interface. A human–robot communication framework is designed for executing cooperative and competitive processing tasks between users and robots by using object oriented and modularized software architecture, operability, and functionality. Some experimental results are presented to show the performance of the proposed system based on simulated and real-time information. </jats:p

    Visual based localization of a legged robot with a topological representation

    Get PDF
    In this chapter we have presented the performance of a localization method of legged AIBO robots in not-engineered environments, using vision as an active input sensor. This method is based on classic markovian approach but it has not been previously used with legged robots in indoor office environments. We have shown that the robot is able to localize itself in real time even inenvironments with noise produced by the human activity in a real office. It deals with uncertainty in its actions and uses perceived natural landmarks of the environment as the main sensor inpu
    • …
    corecore