89,783 research outputs found

    Offline Multi-Agent Reinforcement Learning with Implicit Global-to-Local Value Regularization

    Full text link
    Offline reinforcement learning (RL) has received considerable attention in recent years due to its attractive capability of learning policies from offline datasets without environmental interactions. Despite some success in the single-agent setting, offline multi-agent RL (MARL) remains to be a challenge. The large joint state-action space and the coupled multi-agent behaviors pose extra complexities for offline policy optimization. Most existing offline MARL studies simply apply offline data-related regularizations on individual agents, without fully considering the multi-agent system at the global level. In this work, we present OMIGA, a new offline m ulti-agent RL algorithm with implicit global-to-local v alue regularization. OMIGA provides a principled framework to convert global-level value regularization into equivalent implicit local value regularizations and simultaneously enables in-sample learning, thus elegantly bridging multi-agent value decomposition and policy learning with offline regularizations. Based on comprehensive experiments on the offline multi-agent MuJoCo and StarCraft II micro-management tasks, we show that OMIGA achieves superior performance over the state-of-the-art offline MARL methods in almost all tasks

    Organization of Multi-Agent Systems: An Overview

    Full text link
    In complex, open, and heterogeneous environments, agents must be able to reorganize towards the most appropriate organizations to adapt unpredictable environment changes within Multi-Agent Systems (MAS). Types of reorganization can be seen from two different levels. The individual agents level (micro-level) in which an agent changes its behaviors and interactions with other agents to adapt its local environment. And the organizational level (macro-level) in which the whole system changes it structure by adding or removing agents. This chapter is dedicated to overview different aspects of what is called MAS Organization including its motivations, paradigms, models, and techniques adopted for statically or dynamically organizing agents in MAS.Comment: 12 page

    A multi-agent based evolutionary algorithm in non-stationary environments

    Get PDF
    This article is posted here with permission of IEEE - Copyright @ 2008 IEEEIn this paper, a multi-agent based evolutionary algorithm (MAEA) is introduced to solve dynamic optimization problems. The agents simulate living organism features and co-evolve to find optimum. All agents live in a lattice like environment, where each agent is fixed on a lattice point. In order to increase the energy, agents can compete with their neighbors and can also acquire knowledge based on statistic information. In order to maintain the diversity of the population, the random immigrants and adaptive primal dual mapping schemes are used. Simulation experiments on a set of dynamic benchmark problems show that MAEA can obtain a better performance in non-stationary environments in comparison with several peer genetic algorithms.This work was suported by the Key Program of National Natural Science Foundation of China under Grant No. 70431003, the Science Fund for Creative Research Group of the National Natural Science Foundation of China under Grant No. 60521003, the National Science and Technology Support Plan of China under Grant No. 2006BAH02A09, and the Engineering and Physical Sciences Research Council of the United Kingdom under Grant No. EP/E060722/1
    corecore