123 research outputs found

    Prompt interval temporal logic

    Get PDF
    Interval temporal logics are expressive formalisms for temporal representation and reasoning, which use time intervals as primitive temporal entities. They have been extensively studied for the past two decades and successfully applied in AI and computer science. Unfortunately, they lack the ability of expressing promptness conditions, as it happens with the commonly-used temporal logics, e.g., LTL: whenever we deal with a liveness request, such as \u201csomething good eventually happens\u201d, there is no way to impose a bound on the delay with which it is fulfilled. In the last years, such an issue has been addressed in automata theory, game theory, and temporal logic. In this paper, we approach it in the interval temporal logic setting. First, we introduce PROMPT-PNL, a prompt extension of the well-studied interval temporal logic PNL, and we prove the undecidability of its satisfiability problem; then, we show how to recover decidability (NEXPTIME-completeness) by imposing a natural syntactic restriction on it

    Decidability Issues for Petri Nets

    Get PDF
    This is a survey of some decidability results for Petri nets, covering the last three decades. The presentation is structured around decidability of specific properties, various behavioural equivalences and finally the model checking problem for temporal logics

    Promptness and Bounded Fairness in Concurrent and Parameterized Systems

    Get PDF
    We investigate the satisfaction of specifications in Prompt Linear Temporal Logic (Prompt-LTL) by concurrent systems. Prompt-LTL is an extension of LTL that allows to specify parametric bounds onthe satisfaction of eventualities, thus adding a quantitative aspect to the specification language. We establish a connection between bounded fairness, bounded stutter equivalence, and the satisfaction of Prompt-LTL\X formulas. Based on this connection, we prove the first cutoff results for different classes of systems with a parametric number of components and quantitative specifications, thereby identifying previously unknown decidable fragments of the parameterized model checking problem

    A Cyclic Distributed Garbage Collector for Network Objects

    Get PDF
    This paper presents an algorithm for distributed garbage collection and outlines its implementation within the Network Objects system. The algorithm is based on a reference listing scheme, which is augmented by partial tracing in order to collect distributed garbage cycles. Processes may be dynamically organised into groups, according to appropriate heuristics, to reclaim distributed garbage cycles. The algorithm places no overhead on local collectors and suspends local mutators only briefly. Partial tracing of the distributed graph involves only objects thought to be part of a garbage cycle: no collaboration with other processes is required. The algorithm offers considerable flexibility, allowing expediency and fault-tolerance to be traded against completeness

    The MSO+U theory of (N, <) is undecidable

    Get PDF
    We consider the logic MSO+U, which is monadic second-order logic extended with the unbounding quantifier. The unbounding quantifier is used to say that a property of finite sets holds for sets of arbitrarily large size. We prove that the logic is undecidable on infinite words, i.e. the MSO+U theory of (N,<) is undecidable. This settles an open problem about the logic, and improves a previous undecidability result, which used infinite trees and additional axioms from set theory.Comment: 9 pages, with 2 figure

    Parameterized verification and repair of concurrent systems

    Get PDF
    In this thesis, we present novel approaches for model checking, repair and synthesis of systems that may be parameterized in their number of components. The parameterized model checking problem (PMCP) is in general undecidable, and therefore the focus is on restricted classes of parameterized concurrent systems where the problem is decidable. Under certain conditions, the problem is decidable for guarded protocols, and for systems that communicate via a token, a pairwise, or a broadcast synchronization. In this thesis we improve existing results for guarded protocols and we show that the PMCP of guarded protocols and token passing systems is decidable for specifications that add a quantitative aspect to LTL, called Prompt-LTL. Furthermore, we present, to our knowledge, the first parameterized repair algorithm. The parameterized repair problem is to find a refinement of a process implementation p such that the concurrent system with an arbitrary number of instances of p is correct. We show how this algorithm can be used on classes of systems that can be represented as well structured transition systems (WSTS). Additionally we present two safety synthesis algorithms that utilize a lazy approach. Given a faulty system, the algorithms first symbolically model check the system, then the obtained error traces are analyzed to synthesize a candidate that has no such traces. Experimental results show that our algorithm solves a number of benchmarks that are intractable for existing tools. Furthermore, we introduce our tool AIGEN for generating random Boolean functions and transition systems in a symbolic representation.In dieser Arbeit stellen wir neuartige Ans atze für das Model-Checking, die Reparatur und die Synthese von Systemen vor, die in ihrer Anzahl von Komponenten parametrisiert sein können. Das Problem des parametrisierten Model-Checking (PMCP) ist im Allgemeinen unentscheidbar, und daher liegt der Fokus auf eingeschränkten Klassen parametrisierter synchroner Systeme, bei denen das Problem entscheidbar ist. Unter bestimmten Bedingungen ist das Problem für Guarded Protocols und für Systeme, die über ein Token, eine Pairwise oder eine Broadcast-Synchronisation kommunizieren, entscheidbar. In dieser Arbeit verbessern wir bestehende Ergebnisse für Guarded Protocols und zeigen die Entscheidbarkeit des PMCP für Guarded Protocols und Token-Passing Systeme mit Spezifikationen in der temporalen Logik Prompt-LTL, die LTL einen quantitativen Aspekt hinzufügt. Darüber hinaus präsentieren wir unseres Wissens den ersten parametrisierten Reparaturalgorithmus. Das parametrisierte Reparaturproblem besteht darin, eine Verfeinerung einer Prozessimplementierung p zu finden, so dass das synchrone Systeme mit einer beliebigen Anzahl von Instanzen von p korrekt ist. Wir zeigen, wie dieser Algorithmus auf Klassen von Systemen angewendet werden kann, die als Well Structured Transition Systems (WSTS) dargestellt werden können. Außerdem präsentieren wir zwei Safety-Synthesis Algorithmen, die einen "lazy" Ansatz verwenden. Bei einem fehlerhaften System überprüfen die Algorithmen das System symbolisch, dann werden die erhaltenen "Gegenbeispiel" analysiert, um einen Kandidaten zu synthetisieren der keine solchen Fehlerpfade hat. Versuchsergebnisse zeigen, dass unser Algorithmus eine Reihe von Benchmarks löst, die für bestehende Tools nicht lösbar sind. Darüber hinaus stellen wir unser Tool AIGEN zur Erzeugung zufälliger Boolescher Funktionen und Transitionssysteme in einer symbolischen Darstellung vor

    An Improvement of the Piggyback Algorithm for Parallel Model Checking

    Get PDF
    This paper extends the piggyback algorithm to enlarge the set of liveness properties it can verify. Its extension is motivated by an attempt to express in logic the counterexamples it can detect and relate them to bounded liveness. The original algorithm is based on parallel breadth-first search and piggybacking of accepting states that are deleted after counting a fixed number of transitions. The main improvement is obtained by renewing the counter of transitions when the same accepting states are visited in the negated property automaton. In addition, we describe piggybacking of multiple states in either sets (exact) or Bloom filters (lossy but conservative), and use of local searches that attempt to connect cycles fragmented among processing cores. Finally it is proved that accepting cycle detection is in NC in the size of the product automaton's entire state space, including unreachable states

    Computing Bounds for Counter Automata

    Get PDF
    Qualitative formal verification, that seeks Boolean answers about the behavior of a system, is often insufficient for practical purposes. Observing quantitative information is of greater interest, e.g. for the calibration of a battery or a real-time scheduler. Historically, the focus has been on quantities in continuous domain, but recent years showed a renewed interest for discrete quantitative domains. Counter Automata (CA) is a quantitative extension of classical omega-automata. Recently a nice theory has been developed for them that extends the qualitative setting, with counterparts in terms of logics, automata and algebraic structure. We propose an adaptation, with plenty of practical applications,  of this formalism to express properties over discrete quantitative domains. The behavior of a Counter Automaton defines a function from infinite words to integers. Finding the bounds of such a function over a given set of words can be seen as an extension of qualitative universal and existential model-checking. Although the problem of determining whether such bounds are finite have already been addressed, efficient algorithms to compute their exact values still lack. We propose an non-naive method for the computation of the exact values of these bounds. It relies on a generalization of the emptiness problem of omega-automata. To solve this generalized emptiness problem, we propose an algorithm that extends emptiness check algorithms based on SCC enumeration.

    Parameterized Linear Temporal Logics Meet Costs: Still not Costlier than LTL

    Full text link
    We continue the investigation of parameterized extensions of Linear Temporal Logic (LTL) that retain the attractive algorithmic properties of LTL: a polynomial space model checking algorithm and a doubly-exponential time algorithm for solving games. Alur et al. and Kupferman et al. showed that this is the case for Parametric LTL (PLTL) and PROMPT-LTL respectively, which have temporal operators equipped with variables that bound their scope in time. Later, this was also shown to be true for Parametric LDL (PLDL), which extends PLTL to be able to express all omega-regular properties. Here, we generalize PLTL to systems with costs, i.e., we do not bound the scope of operators in time, but bound the scope in terms of the cost accumulated during time. Again, we show that model checking and solving games for specifications in PLTL with costs is not harder than the corresponding problems for LTL. Finally, we discuss PLDL with costs and extensions to multiple cost functions.Comment: In Proceedings GandALF 2015, arXiv:1509.0685
    • …
    corecore