1,806 research outputs found

    From Linguistics to Ontologies The Role of Named Entities in the Conceptualisation Process

    No full text
    International audienceOntologies that have been built from texts can be associated with lexical information that is crucial for the semantic annotation of texts and all semantic search tasks. However, the entire pocess of building ontologies from texts cannot be fully automated and it is important to guide the knowledge engineer during the building process. This paper presents an enriched version of TERMINAE, which is a text-based methodology for ontology design. It combines a fact-based approach of modeling with the more traditional concept-centric one. We show that named entities can be used to enrich an existing ontology and to bootstrap the acquisition process. In other words, named entities are used for the conceptualisation of ontologies and not only for their population. This approach is illustrated on two use-cases based on policy documents and evaluated by measuring the Precision and Recall of the resulting ontologies with respect to pre-existing ontologies independently built by domain experts

    Design and Construction of Semantic Document Networks Using Concept Extraction

    Get PDF
    Processing of unstructured documents according to their content is required in many disciplines; e.g., machine translation, text analysis and mining, and information extraction and retrieval. Whilst research in fields like text analysis, conceptualisation, or design of semantic networks progressed crucially over the last years, we still observe gaps between state-of-the-art algorithms to extract concepts from documents and how these concepts are linked effective and efficiently. This paper proposes a framework to store processed documents in a specialised semantic network database to enhance retrieval and analysis of common concepts in documents. We apply natural language reduction to calculate semantic cores for the concept-based indexing of stored documents. The developed prototype demonstrates an advanced document storage as well as a fast (semantical) retrieval of documents based on given key concepts

    Conceptualisation and Annotation of Drug Nonadherence Information for Knowledge Extraction from Patient-Generated Texts

    Get PDF
    Approaches to knowledge extraction (KE) in the health domain often start by annotating text to indicate the knowledge to be extracted, and then use the annotated text to train systems to perform the KE. This may work for annotating named entities or other contiguous noun phrases (drugs, some drug effects), but be- comes increasingly difficult when items tend to be expressed across multiple, possibly non- contiguous, syntactic constituents (e.g. most descriptions of drug effects in user-generated text). Other issues include that it is not al- ways clear how annotations map to actionable insights, or how they scale up to, or can form part of, more complex KE tasks. This paper reports our efforts in developing an approach to extracting knowledge about drug nonadherence from health forums which led us to conclude that development cannot proceed in separate steps but that all aspects—from conceptualisation to annotation scheme development, annotation, KE system training and knowledge graph instantiation—are interdependent and need to be co-developed. Our aim in this paper is two-fold: we describe a generally applicable framework for developing a KE approach, and present a specific KE approach, developed with the framework, for the task of gathering information about antidepressant drug nonadherence. We report the conceptualisation, the annotation scheme, the annotated corpus, and an analysis of annotated texts

    Key steps for the construction of a glossary based on FunGramKB Term Extractor and referred to international cooperation against organised crime and terrorism

    Get PDF
    The employment of new technological instruments for the processing of natural languages is crucial to improve the way humans interact with machines. The Functional Grammar Knowledge Base (FunGramKB henceforth) has been designed to cover Natural Language Processing (NLP henceforth) tasks in the area of Artificial Intelligence. The multipurpose lexical conceptual knowledge base FunGramKB is capable of combining linguistic knowledge and human cognitive abilities within its system as a whole. The conceptual module of FunGramKB contains both common-sense knowledge (Ontology), procedural knowledge (Cognicon) as well as knowledge about named entities representing people, places, organisations or other entities (Onomasticon). The Onomastical component is used to process the information from the perspective of specialised discourse. The definition in Natural Language of a consistent list of encyclopaedic terms existent referred to the legislation and to entities which fight against organised crime and terrorism existent in the GCTC would be the stepping stone for the future development of the Onomasticon. The FunGramKB Term Extractor (FGKBTE henceforth) is used to process the information. To cope with the inclusion of the terms in the Onomasticon according to the Conceptual Representation Language (COREL henceforth) schemata, the DBpedia project has been of paramount importance to develop specific patterns for the structure of the definitions.El empleo de nuevas herramientas tecnolĂłgicas para el Procesamiento del Lenguaje Natural (PLN en adelante) es fundamental para mejorar la forma en que las mĂĄquinas se relacionan con los seres humanos. FunGramKB ha sido diseñada para abordar tareas de PLN inmersas en el ĂĄrea de la Inteligencia Artificial. La base de conocimiento lĂ©xico conceptual multipropĂłsito FunGramKB es capaz de combinar el conocimiento lingĂŒĂ­stico con las habilidades cognitivas humanas dentro de su sistema como conjunto. El modulo conceptual de FunGramKB se basa en el sentido comĂșn (OntologĂ­a) y en el conocimiento procedimental (CognicĂłn), a la vez que en el conocimiento sobre entidades nombradas que representan personas, lugares, organizaciones u otras entidades (Onomasticon). La definiciĂłn en Lenguaje Natural de una lista consistente de tĂ©rminos enciclopĂ©dicos concerniente tanto a instrumentos legales como a organizaciones que luchan contra el crimen organizado y el terrorismo que se ha incluido en el GCTC supondrĂĄ un gran adelanto en aras al futuro desarrollo del Onomasticon. El FGKBTE se usa para procesar la informaciĂłn. Con vistas a incluir los tĂ©rminos en el OnomasticĂłn de acuerdo al esquema COREL, el proyecto DBpedia ha sido de una importancia fundamental para desarrollar patrones determinados con los que estructurar las definiciones.Universidad de Granada. Departamento de FilologĂ­as Inglesa y Alemana. MĂĄster en LingĂŒĂ­stica y Literatura Inglesas, curso 2013-201

    OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web

    Get PDF
    OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web 1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs. These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools. Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate. However, linguistic annotation tools have still some limitations, which can be summarised as follows: 1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.). 2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts. 3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc. A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved. In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool. Therefore, it would be quite useful to find a way to (i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools; (ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate. Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned. Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section. 2. GOALS OF THE PRESENT WORK As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based triples, as in the usual Semantic Web languages (namely RDF(S) and OWL), in order for the model to be considered suitable for the Semantic Web. Besides, to be useful for the Semantic Web, this model should provide a way to automate the annotation of web pages. As for the present work, this requirement involved reusing the linguistic annotation tools purchased by the OEG research group (http://www.oeg-upm.net), but solving beforehand (or, at least, minimising) some of their limitations. Therefore, this model had to minimise these limitations by means of the integration of several linguistic annotation tools into a common architecture. Since this integration required the interoperation of tools and their annotations, ontologies were proposed as the main technological component to make them effectively interoperate. From the very beginning, it seemed that the formalisation of the elements and the knowledge underlying linguistic annotations within an appropriate set of ontologies would be a great step forward towards the formulation of such a model (henceforth referred to as OntoTag). Obviously, first, to combine the results of the linguistic annotation tools that operated at the same level, their annotation schemas had to be unified (or, preferably, standardised) in advance. This entailed the unification (id. standardisation) of their tags (both their representation and their meaning), and their format or syntax. Second, to merge the results of the linguistic annotation tools operating at different levels, their respective annotation schemas had to be (a) made interoperable and (b) integrated. And third, in order for the resulting annotations to suit the Semantic Web, they had to be specified by means of an ontology-based vocabulary, and structured by means of ontology-based triples, as hinted above. Therefore, a new annotation scheme had to be devised, based both on ontologies and on this type of triples, which allowed for the combination and the integration of the annotations of any set of linguistic annotation tools. This annotation scheme was considered a fundamental part of the model proposed here, and its development was, accordingly, another major objective of the present work. All these goals, aims and objectives could be re-stated more clearly as follows: Goal 1: Development of a set of ontologies for the formalisation of the linguistic knowledge relating linguistic annotation. Sub-goal 1.1: Ontological formalisation of the EAGLES (1996a; 1996b) de facto standards for morphosyntactic and syntactic annotation, in a way that helps respect the triple structure recommended for annotations in these works (which is isomorphic to the triple structures used in the context of the Semantic Web). Sub-goal 1.2: Incorporation into this preliminary ontological formalisation of other existing standards and standard proposals relating the levels mentioned above, such as those currently under development within ISO/TC 37 (the ISO Technical Committee dealing with Terminology, which deals also with linguistic resources and annotations). Sub-goal 1.3: Generalisation and extension of the recommendations in EAGLES (1996a; 1996b) and ISO/TC 37 to the semantic level, for which no ISO/TC 37 standards have been developed yet. Sub-goal 1.4: Ontological formalisation of the generalisations and/or extensions obtained in the previous sub-goal as generalisations and/or extensions of the corresponding ontology (or ontologies). Sub-goal 1.5: Ontological formalisation of the knowledge required to link, combine and unite the knowledge represented in the previously developed ontology (or ontologies). Goal 2: Development of OntoTag’s annotation scheme, a standard-based abstract scheme for the hybrid (linguistically-motivated and ontological-based) annotation of texts. Sub-goal 2.1: Development of the standard-based morphosyntactic annotation level of OntoTag’s scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996a) and also the recommendations included in the ISO/MAF (2008) standard draft. Sub-goal 2.2: Development of the standard-based syntactic annotation level of the hybrid abstract scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996b) and the ISO/SynAF (2010) standard draft. Sub-goal 2.3: Development of the standard-based semantic annotation level of OntoTag’s (abstract) scheme. Sub-goal 2.4: Development of the mechanisms for a convenient integration of the three annotation levels already mentioned. These mechanisms should take into account the recommendations included in the ISO/LAF (2009) standard draft. Goal 3: Design of OntoTag’s (abstract) annotation architecture, an abstract architecture for the hybrid (semantic) annotation of texts (i) that facilitates the integration and interoperation of different linguistic annotation tools, and (ii) whose results comply with OntoTag’s annotation scheme. Sub-goal 3.1: Specification of the decanting processes that allow for the classification and separation, according to their corresponding levels, of the results of the linguistic tools annotating at several different levels. Sub-goal 3.2: Specification of the standardisation processes that allow (a) complying with the standardisation requirements of OntoTag’s annotation scheme, as well as (b) combining the results of those linguistic tools that share some level of annotation. Sub-goal 3.3: Specification of the merging processes that allow for the combination of the output annotations and the interoperation of those linguistic tools that share some level of annotation. Sub-goal 3.4: Specification of the merge processes that allow for the integration of the results and the interoperation of those tools performing their annotations at different levels. Goal 4: Generation of OntoTagger’s schema, a concrete instance of OntoTag’s abstract scheme for a concrete set of linguistic annotations. These linguistic annotations result from the tools and the resources available in the research group, namely ‱ Bitext’s DataLexica (http://www.bitext.com/EN/datalexica.asp), ‱ LACELL’s (POS) tagger (http://www.um.es/grupos/grupo-lacell/quees.php), ‱ Connexor’s FDG (http://www.connexor.eu/technology/machinese/glossary/fdg/), and ‱ EuroWordNet (Vossen et al., 1998). This schema should help evaluate OntoTag’s underlying hypotheses, stated below. Consequently, it should implement, at least, those levels of the abstract scheme dealing with the annotations of the set of tools considered in this implementation. This includes the morphosyntactic, the syntactic and the semantic levels. Goal 5: Implementation of OntoTagger’s configuration, a concrete instance of OntoTag’s abstract architecture for this set of linguistic tools and annotations. This configuration (1) had to use the schema generated in the previous goal; and (2) should help support or refute the hypotheses of this work as well (see the next section). Sub-goal 5.1: Implementation of the decanting processes that facilitate the classification and separation of the results of those linguistic resources that provide annotations at several different levels (on the one hand, LACELL’s tagger operates at the morphosyntactic level and, minimally, also at the semantic level; on the other hand, FDG operates at the morphosyntactic and the syntactic levels and, minimally, at the semantic level as well). Sub-goal 5.2: Implementation of the standardisation processes that allow (i) specifying the results of those linguistic tools that share some level of annotation according to the requirements of OntoTagger’s schema, as well as (ii) combining these shared level results. In particular, all the tools selected perform morphosyntactic annotations and they had to be conveniently combined by means of these processes. Sub-goal 5.3: Implementation of the merging processes that allow for the combination (and possibly the improvement) of the annotations and the interoperation of the tools that share some level of annotation (in particular, those relating the morphosyntactic level, as in the previous sub-goal). Sub-goal 5.4: Implementation of the merging processes that allow for the integration of the different standardised and combined annotations aforementioned, relating all the levels considered. Sub-goal 5.5: Improvement of the semantic level of this configuration by adding a named entity recognition, (sub-)classification and annotation subsystem, which also uses the named entities annotated to populate a domain ontology, in order to provide a concrete application of the present work in the two areas involved (the Semantic Web and Corpus Linguistics). 3. MAIN RESULTS: ASSESSMENT OF ONTOTAG’S UNDERLYING HYPOTHESES The model developed in the present thesis tries to shed some light on (i) whether linguistic annotation tools can effectively interoperate; (ii) whether their results can be combined and integrated; and, if they can, (iii) how they can, respectively, interoperate and be combined and integrated. Accordingly, several hypotheses had to be supported (or rejected) by the development of the OntoTag model and OntoTagger (its implementation). The hypotheses underlying OntoTag are surveyed below. Only one of the hypotheses (H.6) was rejected; the other five could be confirmed. H.1 The annotations of different levels (or layers) can be integrated into a sort of overall, comprehensive, multilayer and multilevel annotation, so that their elements can complement and refer to each other. ‱ CONFIRMED by the development of: o OntoTag’s annotation scheme, o OntoTag’s annotation architecture, o OntoTagger’s (XML, RDF, OWL) annotation schemas, o OntoTagger’s configuration. H.2 Tool-dependent annotations can be mapped onto a sort of tool-independent annotations and, thus, can be standardised. ‱ CONFIRMED by means of the standardisation phase incorporated into OntoTag and OntoTagger for the annotations yielded by the tools. H.3 Standardisation should ease: H.3.1: The interoperation of linguistic tools. H.3.2: The comparison, combination (at the same level and layer) and integration (at different levels or layers) of annotations. ‱ H.3 was CONFIRMED by means of the development of OntoTagger’s ontology-based configuration: o Interoperation, comparison, combination and integration of the annotations of three different linguistic tools (Connexor’s FDG, Bitext’s DataLexica and LACELL’s tagger); o Integration of EuroWordNet-based, domain-ontology-based and named entity annotations at the semantic level. o Integration of morphosyntactic, syntactic and semantic annotations. H.4 Ontologies and Semantic Web technologies (can) play a crucial role in the standardisation of linguistic annotations, by providing consensual vocabularies and standardised formats for annotation (e.g., RDF triples). ‱ CONFIRMED by means of the development of OntoTagger’s RDF-triple-based annotation schemas. H.5 The rate of errors introduced by a linguistic tool at a given level, when annotating, can be reduced automatically by contrasting and combining its results with the ones coming from other tools, operating at the same level. However, these other tools might be built following a different technological (stochastic vs. rule-based, for example) or theoretical (dependency vs. HPS-grammar-based, for instance) approach. ‱ CONFIRMED by the results yielded by the evaluation of OntoTagger. H.6 Each linguistic level can be managed and annotated independently. ‱ REJECTED: OntoTagger’s experiments and the dependencies observed among the morphosyntactic annotations, and between them and the syntactic annotations. In fact, Hypothesis H.6 was already rejected when OntoTag’s ontologies were developed. We observed then that several linguistic units stand on an interface between levels, belonging thereby to both of them (such as morphosyntactic units, which belong to both the morphological level and the syntactic level). Therefore, the annotations of these levels overlap and cannot be handled independently when merged into a unique multileveled annotation. 4. OTHER MAIN RESULTS AND CONTRIBUTIONS First, interoperability is a hot topic for both the linguistic annotation community and the whole Computer Science field. The specification (and implementation) of OntoTag’s architecture for the combination and integration of linguistic (annotation) tools and annotations by means of ontologies shows a way to make these different linguistic annotation tools and annotations interoperate in practice. Second, as mentioned above, the elements involved in linguistic annotation were formalised in a set (or network) of ontologies (OntoTag’s linguistic ontologies). ‱ On the one hand, OntoTag’s network of ontologies consists of − The Linguistic Unit Ontology (LUO), which includes a mostly hierarchical formalisation of the different types of linguistic elements (i.e., units) identifiable in a written text; − The Linguistic Attribute Ontology (LAO), which includes also a mostly hierarchical formalisation of the different types of features that characterise the linguistic units included in the LUO; − The Linguistic Value Ontology (LVO), which includes the corresponding formalisation of the different values that the attributes in the LAO can take; − The OIO (OntoTag’s Integration Ontology), which Includes the knowledge required to link, combine and unite the knowledge represented in the LUO, the LAO and the LVO; Can be viewed as a knowledge representation ontology that describes the most elementary vocabulary used in the area of annotation. ‱ On the other hand, OntoTag’s ontologies incorporate the knowledge included in the different standards and recommendations for linguistic annotation released so far, such as those developed within the EAGLES and the SIMPLE European projects or by the ISO/TC 37 committee: − As far as morphosyntactic annotations are concerned, OntoTag’s ontologies formalise the terms in the EAGLES (1996a) recommendations and their corresponding terms within the ISO Morphosyntactic Annotation Framework (ISO/MAF, 2008) standard; − As for syntactic annotations, OntoTag’s ontologies incorporate the terms in the EAGLES (1996b) recommendations and their corresponding terms within the ISO Syntactic Annotation Framework (ISO/SynAF, 2010) standard draft; − Regarding semantic annotations, OntoTag’s ontologies generalise and extend the recommendations in EAGLES (1996a; 1996b) and, since no stable standards or standard drafts have been released for semantic annotation by ISO/TC 37 yet, they incorporate the terms in SIMPLE (2000) instead; − The terms coming from all these recommendations and standards were supplemented by those within the ISO Data Category Registry (ISO/DCR, 2008) and also of the ISO Linguistic Annotation Framework (ISO/LAF, 2009) standard draft when developing OntoTag’s ontologies. Third, we showed that the combination of the results of tools annotating at the same level can yield better results (both in precision and in recall) than each tool separately. In particular, 1. OntoTagger clearly outperformed two of the tools integrated into its configuration, namely DataLexica and FDG in all the combination sub-phases in which they overlapped (i.e. POS tagging, lemma annotation and morphological feature annotation). As far as the remaining tool is concerned, i.e. LACELL’s tagger, it was also outperformed by OntoTagger in POS tagging and lemma annotation, and it did not behave better than OntoTagger in the morphological feature annotation layer. 2. As an immediate result, this implies that a) This type of combination architecture configurations can be applied in order to improve significantly the accuracy of linguistic annotations; and b) Concerning the morphosyntactic level, this could be regarded as a way of constructing more robust and more accurate POS tagging systems. Fourth, Semantic Web annotations are usually pe

    Knowledge Extraction from Audio Content Service Providers' API Descriptions

    Get PDF

    The process of building the upper-level hierarchy for the aircraft structure ontology to be integrated in FunGramKB

    Get PDF
    In this article we collect a corpus of texts which operate with a controlled language (ASD Simplified Technical English) in order to facilitate the development of a new domain-specific ontology (the aircraft structure) based on a technical discipline (aeronautical engineering) included in the so called “hard” sciences. This new repository should be compatible with the Core Ontology and the corresponding English Lexicon in FunGramKB (a multipurpose lexico-conceptual knowledge base for natural language processing (NLP)), and, in the same vein, should eventually give support to aircraft maintenance management systems. By contrast, in previous approaches we applied a stepwise methodology for the construction of a domain-specific subontology compatible with FunGramKB systems in criminal law, but the high occurrence of terminological banalisation and the scarce number of specific terms, due to the social nature of the discipline, were added problems to the most common NLP difficulties (polysemy and ambiguity). Taking into consideration previous results and the complexity of this task, here we only intend to take the first step towards the modelling of the aircraft ontology: the development of its taxonomic hierarchy. Consequently, the hierarchy starts with the whole system (i.e., an aircraft) and follows the traditional decomposition of the system down to the elementary components (top-down approach). At the same time, we have collected a corpus of 2,480 files of aircraft maintenance instructions, courtesy of Airbus in Seville. For the bottom-up approach (under construction), we consult specialised references end explore the corpus through the identification and extraction of term candidates with DEXTER, an online multilingual workbench especially designed for the discovery and extraction of terms

    an ontology of Islamic artefacts for terminological purposes

    Get PDF
    UID/LIN/03213/2019OntoAndalus aims at constituting a shared conceptualisation of the domain within a future multilingual terminological resource targeted at experts and students of Islamic archaeology. The present version of OntoAndalus is aligned with DOLCE+DnS Ultralite (DUL), an established top-level ontology for the Semantic Web. This article describes the modelling assumptions underlying OntoAndalus, as well as the more relevant design patterns (i.e. artefact types, events and individuals). The latter are exemplified through relevant case studies in the domain, namely those of lighting artefacts, the life cycle of pottery and the several descriptions of Vaso de Tavira.authorsversionepub_ahead_of_prin
    • 

    corecore