369 research outputs found

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201

    Counterfactuals 2.0 Logic, Truth Conditions, and Probability

    Get PDF
    The present thesis focuses on counterfactuals. Specifically, we will address new questions and open problems that arise for the standard semantic accounts of counterfactual conditionals. The first four chapters deal with the Lewisian semantic account of counterfactuals. On a technical level, we contribute by providing an equivalent algebraic semantics for Lewis' variably strict conditional logics, which is notably absent in the literature. We introduce a new kind of algebra and differentiate between local and global versions of each of Lewis' variably strict conditional logics. We study the algebraic properties of Lewis' logics and the structure theory of our newly introduced algebras. Additionally, we employ a new algebraic construction, based on the framework of Boolean algebras of conditionals, to provide an alternative semantics for Lewisian counterfactual conditionals. This semantic account allows us to establish new truth conditions for Lewisian counterfactuals, implying that Lewisian counterfactuals are definable conditionals, and each counterfactual can be characterized as a modality of a corresponding probabilistic conditional. We further extend these results by demonstrating that each Lewisian counterfactual can also be characterized as a modality of the corresponding Stalnaker conditional. The resulting formal semantic framework is much more expressive than the standard one and, in addition to providing new truth conditions for counterfactuals, it also allows us to define a new class of conditional logics falling into the broader framework of weak logics. On the philosophical side, we argue that our results shed new light on the understanding of Lewisian counterfactuals and prompt a conceptual shift in this field: Lewisian counterfactual dependence can be understood as a modality of probabilistic conditional dependence or Stalnakerian conditional dependence. In other words, whether a counterfactual connection occurs between A and B depends on whether it is "necessary" for a Stalnakerian/probabilistic dependence to occur between A and B. We also propose some ways to interpret the kind of necessity involved in this interpretation. The remaining two chapters deal with the probability of counterfactuals. We provide an answer to the question of how we can characterize the probability that a Lewisian counterfactual is true, which is an open problem in the literature. We show that the probability of a Lewisian counterfactual can be characterized in terms of belief functions from Dempster-Shafer theory of evidence, which are a super-additive generalization of standard probability. We define an updating procedure for belief functions based on the imaging procedure and show that the probability of a counterfactual A > B amounts to the belief function of B imaged on A. This characterization strongly relies on the logical results we proved in the previous chapters. Moreover, we also solve an open problem concerning the procedure to assign a probability to complex counterfactuals in the framework of causal modelling semantics. A limitation of causal modelling semantics is that it cannot account for the probability of counterfactuals with disjunctive antecedents. Drawing on the same previous works, we define a new procedure to assign a probability to counterfactuals with disjunctive antecedents in the framework of causal modelling semantics. We also argue that our procedure is satisfactory in that it yields meaningful results and adheres to some conceptually intuitive constraints one may want to impose when computing the probability of counterfactuals

    Fixpoint semantics for logic programming a survey

    Get PDF
    AbstractThe variety of semantical approaches that have been invented for logic programs is quite broad, drawing on classical and many-valued logic, lattice theory, game theory, and topology. One source of this richness is the inherent non-monotonicity of its negation, something that does not have close parallels with the machinery of other programming paradigms. Nonetheless, much of the work on logic programming semantics seems to exist side by side with similar work done for imperative and functional programming, with relatively minimal contact between communities. In this paper we summarize one variety of approaches to the semantics of logic programs: that based on fixpoint theory. We do not attempt to cover much beyond this single area, which is already remarkably fruitful. We hope readers will see parallels with, and the divergences from the better known fixpoint treatments developed for other programming methodologies
    • …
    corecore