171 research outputs found

    A Generic Framework for Engineering Graph Canonization Algorithms

    Full text link
    The state-of-the-art tools for practical graph canonization are all based on the individualization-refinement paradigm, and their difference is primarily in the choice of heuristics they include and in the actual tool implementation. It is thus not possible to make a direct comparison of how individual algorithmic ideas affect the performance on different graph classes. We present an algorithmic software framework that facilitates implementation of heuristics as independent extensions to a common core algorithm. It therefore becomes easy to perform a detailed comparison of the performance and behaviour of different algorithmic ideas. Implementations are provided of a range of algorithms for tree traversal, target cell selection, and node invariant, including choices from the literature and new variations. The framework readily supports extraction and visualization of detailed data from separate algorithm executions for subsequent analysis and development of new heuristics. Using collections of different graph classes we investigate the effect of varying the selections of heuristics, often revealing exactly which individual algorithmic choice is responsible for particularly good or bad performance. On several benchmark collections, including a newly proposed class of difficult instances, we additionally find that our implementation performs better than the current state-of-the-art tools

    Unfreezing Casimir invariants: singular perturbations giving rise to forbidden instabilities

    Full text link
    The infinite-dimensional mechanics of fluids and plasmas can be formulated as "noncanonical" Hamiltonian systems on a phase space of Eulerian variables. Singularities of the Poisson bracket operator produce singular Casimir elements that foliate the phase space, imposing topological constraints on the dynamics. Here we proffer a physical interpretation of Casimir elements as \emph{adiabatic invariants} ---upon coarse graining microscopic angle variables, we obtain a macroscopic hierarchy on which the separated action variables become adiabatic invariants. On reflection, a Casimir element may be \emph{unfrozen} by recovering a corresponding angle variable; such an increase in the number of degrees of freedom is, then, formulated as a \emph{singular perturbation}. As an example, we propose a canonization of the resonant-singularity of the Poisson bracket operator of the linearized magnetohydrodynamics equations, by which the ideal obstacle (resonant Casimir element) constraining the dynamics is unfrozen, giving rise to a tearing-mode instability

    On what I do not understand (and have something to say): Part I

    Full text link
    This is a non-standard paper, containing some problems in set theory I have in various degrees been interested in. Sometimes with a discussion on what I have to say; sometimes, of what makes them interesting to me, sometimes the problems are presented with a discussion of how I have tried to solve them, and sometimes with failed tries, anecdote and opinion. So the discussion is quite personal, in other words, egocentric and somewhat accidental. As we discuss many problems, history and side references are erratic, usually kept at a minimum (``see ... '' means: see the references there and possibly the paper itself). The base were lectures in Rutgers Fall'97 and reflect my knowledge then. The other half, concentrating on model theory, will subsequently appear
    • …
    corecore