98,888 research outputs found

    Controllability in partial and uncertain environments

    Get PDF
    Ā© 2014 IEEE.Controller synthesis is a well studied problem that attempts to automatically generate an operational behaviour model of the system-to-be that satisfies a given goal when deployed in a given domain model that behaves according to specified assumptions. A limitation of many controller synthesis techniques is that they require complete descriptions of the problem domain. This is limiting in the context of modern incremental development processes when a fully described problem domain is unavailable, undesirable or uneconomical. Previous work on Modal Transition Systems (MTS) control problems exists, however it is restricted to deterministic MTSs and deterministic Labelled Transition Systems (LTS) implementations. In this paper we study the Modal Transition System Control Problem in its full generality, allowing for nondeterministic MTSs modelling the environments behaviour and nondeterministic LTS implementations. Given an nondeterministic MTS we ask if all, none or some of the nondeterministic LTSs it describes admit an LTS controller that guarantees a given property. We show a technique that solves effectively the MTS realisability problem and it can be, in some cases, reduced to deterministic control problems. In all cases the MTS realisability problem is in same complexity class as the corresponding LTS problem

    Scenarios-based testing of systems with distributed ports

    Get PDF
    Copyright @ 2011 John Wiley & SonsDistributed systems are usually composed of several distributed components that communicate with their environment through specific ports. When testing such a system we separately observe sequences of inputs and outputs at each port rather than a global sequence and potentially cannot reconstruct the global sequence that occurred. Typically, the users of such a system cannot synchronise their actions during use or testing. However, the use of the system might correspond to a sequence of scenarios, where each scenario involves a sequence of interactions with the system that, for example, achieves a particular objective. When this is the case there is the potential for there to be a significant delay between two scenarios and this effectively allows the users of the system to synchronise between scenarios. If we represent the specification of the global system by using a state-based notation, we say that a scenario is any sequence of events that happens between two of these operations. We can encode scenarios in two different ways. The first approach consists of marking some of the states of the specification to denote these synchronisation points. It transpires that there are two ways to interpret such models and these lead to two implementation relations. The second approach consists of adding a set of traces to the specification to represent the traces that correspond to scenarios. We show that these two approaches have similar expressive power by providing an encoding from marked states to sets of traces. In order to assess the appropriateness of our new framework, we show that it represents a conservative extension of previous implementation relations defined in the context of the distributed test architecture: if we onsider that all the states are marked then we simply obtain ioco (the classical relation for single-port systems) while if no state is marked then we obtain dioco (our previous relation for multi-port systems). Finally, we concentrate on the study of controllable test cases, that is, test cases such that each local tester knows exactly when to apply inputs. We give two notions of controllable test cases, define an implementation relation for each of these notions, and relate them. We also show how we can decide whether a test case satisfies these conditions.Research partially supported by the Spanish MEC project TESIS (TIN2009-14312-C02-01), the UK EPSRC project Testing of Probabilistic and Stochastic Systems (EP/G032572/1), and the UCM-BSCH programme to fund research groups (GR58/08 - group number 910606)

    Optimal Control Theory for Continuous Variable Quantum Gates

    Full text link
    We apply the methodology of optimal control theory to the problem of implementing quantum gates in continuous variable systems with quadratic Hamiltonians. We demonstrate that it is possible to define a fidelity measure for continuous variable (CV) gate optimization that is devoid of traps, such that the search for optimal control fields using local algorithms will not be hindered. The optimal control of several quantum computing gates, as well as that of algorithms composed of these primitives, is investigated using several typical physical models and compared for discrete and continuous quantum systems. Numerical simulations indicate that the optimization of generic CV quantum gates is inherently more expensive than that of generic discrete variable quantum gates, and that the exact-time controllability of CV systems plays an important role in determining the maximum achievable gate fidelity. The resulting optimal control fields typically display more complicated Fourier spectra that suggest a richer variety of possible control mechanisms. Moreover, the ability to control interactions between qunits is important for delimiting the total control fluence. The comparative ability of current experimental protocols to implement such time-dependent controls may help determine which physical incarnations of CV quantum information processing will be the easiest to implement with optimal fidelity.Comment: 39 pages, 11 figure

    AbsSynthe: abstract synthesis from succinct safety specifications

    Full text link
    In this paper, we describe a synthesis algorithm for safety specifications described as circuits. Our algorithm is based on fixpoint computations, abstraction and refinement, it uses binary decision diagrams as symbolic data structure. We evaluate our tool on the benchmarks provided by the organizers of the synthesis competition organized within the SYNT'14 workshop.Comment: In Proceedings SYNT 2014, arXiv:1407.493
    • ā€¦
    corecore