2,501 research outputs found

    Computer Graphics. Volume 2 - an Annotated Bibliography to the NASA-MSFC Digital Computer Graphics Program

    Get PDF
    Annotated bibliography on digital computer graphic

    Trusted Artificial Intelligence in Manufacturing; Trusted Artificial Intelligence in Manufacturing

    Get PDF
    The successful deployment of AI solutions in manufacturing environments hinges on their security, safety and reliability which becomes more challenging in settings where multiple AI systems (e.g., industrial robots, robotic cells, Deep Neural Networks (DNNs)) interact as atomic systems and with humans. To guarantee the safe and reliable operation of AI systems in the shopfloor, there is a need to address many challenges in the scope of complex, heterogeneous, dynamic and unpredictable environments. Specifically, data reliability, human machine interaction, security, transparency and explainability challenges need to be addressed at the same time. Recent advances in AI research (e.g., in deep neural networks security and explainable AI (XAI) systems), coupled with novel research outcomes in the formal specification and verification of AI systems provide a sound basis for safe and reliable AI deployments in production lines. Moreover, the legal and regulatory dimension of safe and reliable AI solutions in production lines must be considered as well. To address some of the above listed challenges, fifteen European Organizations collaborate in the scope of the STAR project, a research initiative funded by the European Commission in the scope of its H2020 program (Grant Agreement Number: 956573). STAR researches, develops, and validates novel technologies that enable AI systems to acquire knowledge in order to take timely and safe decisions in dynamic and unpredictable environments. Moreover, the project researches and delivers approaches that enable AI systems to confront sophisticated adversaries and to remain robust against security attacks. This book is co-authored by the STAR consortium members and provides a review of technologies, techniques and systems for trusted, ethical, and secure AI in manufacturing. The different chapters of the book cover systems and technologies for industrial data reliability, responsible and transparent artificial intelligence systems, human centered manufacturing systems such as human-centred digital twins, cyber-defence in AI systems, simulated reality systems, human robot collaboration systems, as well as automated mobile robots for manufacturing environments. A variety of cutting-edge AI technologies are employed by these systems including deep neural networks, reinforcement learning systems, and explainable artificial intelligence systems. Furthermore, relevant standards and applicable regulations are discussed. Beyond reviewing state of the art standards and technologies, the book illustrates how the STAR research goes beyond the state of the art, towards enabling and showcasing human-centred technologies in production lines. Emphasis is put on dynamic human in the loop scenarios, where ethical, transparent, and trusted AI systems co-exist with human workers. The book is made available as an open access publication, which could make it broadly and freely available to the AI and smart manufacturing communities

    A cognitive ego-vision system for interactive assistance

    Get PDF
    With increasing computational power and decreasing size, computers nowadays are already wearable and mobile. They become attendant of peoples' everyday life. Personal digital assistants and mobile phones equipped with adequate software gain a lot of interest in public, although the functionality they provide in terms of assistance is little more than a mobile databases for appointments, addresses, to-do lists and photos. Compared to the assistance a human can provide, such systems are hardly to call real assistants. The motivation to construct more human-like assistance systems that develop a certain level of cognitive capabilities leads to the exploration of two central paradigms in this work. The first paradigm is termed cognitive vision systems. Such systems take human cognition as a design principle of underlying concepts and develop learning and adaptation capabilities to be more flexible in their application. They are embodied, active, and situated. Second, the ego-vision paradigm is introduced as a very tight interaction scheme between a user and a computer system that especially eases close collaboration and assistance between these two. Ego-vision systems (EVS) take a user's (visual) perspective and integrate the human in the system's processing loop by means of a shared perception and augmented reality. EVSs adopt techniques of cognitive vision to identify objects, interpret actions, and understand the user's visual perception. And they articulate their knowledge and interpretation by means of augmentations of the user's own view. These two paradigms are studied as rather general concepts, but always with the goal in mind to realize more flexible assistance systems that closely collaborate with its users. This work provides three major contributions. First, a definition and explanation of ego-vision as a novel paradigm is given. Benefits and challenges of this paradigm are discussed as well. Second, a configuration of different approaches that permit an ego-vision system to perceive its environment and its user is presented in terms of object and action recognition, head gesture recognition, and mosaicing. These account for the specific challenges identified for ego-vision systems, whose perception capabilities are based on wearable sensors only. Finally, a visual active memory (VAM) is introduced as a flexible conceptual architecture for cognitive vision systems in general, and for assistance systems in particular. It adopts principles of human cognition to develop a representation for information stored in this memory. So-called memory processes continuously analyze, modify, and extend the content of this VAM. The functionality of the integrated system emerges from their coordinated interplay of these memory processes. An integrated assistance system applying the approaches and concepts outlined before is implemented on the basis of the visual active memory. The system architecture is discussed and some exemplary processing paths in this system are presented and discussed. It assists users in object manipulation tasks and has reached a maturity level that allows to conduct user studies. Quantitative results of different integrated memory processes are as well presented as an assessment of the interactive system by means of these user studies
    • …
    corecore