2,952 research outputs found

    EV charging stations and RES-based DG: A centralized approach for smart integration in active distribution grids

    Get PDF
    Renewable Energy Sources based (RES-based) Dispersed Generation (DG) and Electrical Vehicles (EVs) charging systems diffusion is in progress in many Countries around the word. They have huge effects on the distribution grids planning and operation, particularly on MV and LV distribution grids. Many studies on their impact on the power systems are ongoing, proposing different approaches of managing. The present work deals with a real application case of integration of EVs charging stations with ES-based DG. The final task of the integration is to be able to assure the maximum utilization of the distribution grid to which both are connected, without any upgrading action, and in accordance with Distribution System Operators (DSOs) needs. The application of the proposed approach is related to an existent distribution system, owned by edistribuzione, the leading DSO in Italy. Diverse types of EVs supplying stations, with diverse diffusion scenarios, have been assumed for the case study; various Optimal Power Flow (OPF) models, based on diverse objective functions, reflecting DSO necessities, have been applied and tried. The obtained results demonstrate that a centralized management approach by the DSO, could assure the respect of operation limits of the system in the actual asset, delaying or avoiding upgrading engagements and charges

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Book of Abstracts: 7th International Conference on Smart Energy Systems

    Get PDF

    Renewable energy in eco-industrial parks and urban-industrial symbiosis: A literature review and a conceptual synthesis

    Get PDF
    Replacing fossil fuels with renewable energy sources is considered as an effective means to reduce carbon emissions at the industrial level and it is often supported by local authorities. However, individual firms still encounter technical and financial barriers that hinder the installation of renewables. The eco-industrial park approach aims to create synergies among firms thereby enabling them to share and efficiently use natural and economic resources. It also provides a suitable model to encourage the use of renewable energy sources in the industry sector. Synergies among eco-industrial parks and the adjacent urban areas can lead to the development of optimized energy production plants, so that the excess energy is available to cover some of the energy demands of nearby towns. This study thus provides an overview of the scientific literature on energy synergies within eco-industrial parks, which facilitate the uptake of renewable energy sources at the industrial level, potentially creating urban-industrial energy symbiosis. The literature analysis was conducted by arranging the energy-related content into thematic categories, aimed at exploring energy symbiosis options within eco-industrial parks. It focuses on the urban-industrial energy symbiosis solutions, in terms of design and optimization models, technologies used and organizational strategies. The study highlights four main pathways to implement energy synergies, and demonstrates viable solutions to improve renewable energy sources uptake at the industrial level. A number of research gaps are also identified, revealing that the energy symbiosis networks between industrial and urban areas integrating renewable energy systems, are under-investigated

    District Energy Systems: Challenges and New Tools for Planning and Evaluation

    Get PDF
    The change from a centralized to a decentralized energy supply creates new challenges in the planning of such energy supply concepts. Specialized planning tools that can cope with the complex requirements and multi-layered boundary conditions of local energy use are therefore needed. Existing methods need to be further developed and optimized to suit the complex stakeholder structures encountered in innovative district projects, as well as for research purposes. This paper presents selected aspects and challenges in the development of an application-oriented planning tool. Using a North German district as a case study, the usability of a Building Information Model as an aggregated data platform is tested in the context of a residential energy district planning process. In addition, the modeling of heating grids using a combination of Geographic Information System and open source thermodynamic tools is presented. Economic valuation methods are examined to determine the extent to which the value of flexibility and access to local flexibility markets can be taken into account. Finally, an approach for evaluating the ecological aspects of the district energy supply is presented, based on the dynamic assessment of imported and exported energy quantities

    A Classification Scheme for Local Energy Trading

    Get PDF
    The current trend towards more renewable and sustainable energy generation leads to an increased interest in new energy management systems and the concept of a smart grid. One important aspect of this is local energy trading, which is an extension of existing electricity markets by including prosumers, who are consumers also producing electricity. Prosumers having a surplus of energy may directly trade this surplus with other prosumers, which are currently in demand. In this paper, we present an overview of the literature in the area of local energy trading. In order to provide structure to the broad range of publications, we identify key characteristics, define the various settings, and cluster the considered literature along these characteristics. We identify three main research lines, each with a distinct setting and research question. We analyze and compare the settings, the used techniques, and the results and findings within each cluster and derive connections between the clusters. In addition, we identify important aspects, which up to now have to a large extent been neglected in the considered literature and highlight interesting research directions, and open problems for future work.Comment: 38 pages, 1 figure, This work has been submitted and accepted at OR Spectru
    corecore