6,708 research outputs found

    From Data Topology to a Modular Classifier

    Full text link
    This article describes an approach to designing a distributed and modular neural classifier. This approach introduces a new hierarchical clustering that enables one to determine reliable regions in the representation space by exploiting supervised information. A multilayer perceptron is then associated with each of these detected clusters and charged with recognizing elements of the associated cluster while rejecting all others. The obtained global classifier is comprised of a set of cooperating neural networks and completed by a K-nearest neighbor classifier charged with treating elements rejected by all the neural networks. Experimental results for the handwritten digit recognition problem and comparison with neural and statistical nonmodular classifiers are given

    Hierarchy in Gene Expression is Predictive for Adult Acute Myeloid Leukemia

    Full text link
    Cancer progresses with a change in the structure of the gene network in normal cells. We define a measure of organizational hierarchy in gene networks of affected cells in adult acute myeloid leukemia (AML) patients. With a retrospective cohort analysis based on the gene expression profiles of 116 acute myeloid leukemia patients, we find that the likelihood of future cancer relapse and the level of clinical risk are directly correlated with the level of organization in the cancer related gene network. We also explore the variation of the level of organization in the gene network with cancer progression. We find that this variation is non-monotonic, which implies the fitness landscape in the evolution of AML cancer cells is nontrivial. We further find that the hierarchy in gene expression at the time of diagnosis may be a useful biomarker in AML prognosis.Comment: 18 pages, 5 figures, to appear in Physical Biolog

    Data fusion with artificial neural networks (ANN) for classification of earth surface from microwave satellite measurements

    Get PDF
    A data fusion system with artificial neural networks (ANN) is used for fast and accurate classification of five earth surface conditions and surface changes, based on seven SSMI multichannel microwave satellite measurements. The measurements include brightness temperatures at 19, 22, 37, and 85 GHz at both H and V polarizations (only V at 22 GHz). The seven channel measurements are processed through a convolution computation such that all measurements are located at same grid. Five surface classes including non-scattering surface, precipitation over land, over ocean, snow, and desert are identified from ground-truth observations. The system processes sensory data in three consecutive phases: (1) pre-processing to extract feature vectors and enhance separability among detected classes; (2) preliminary classification of Earth surface patterns using two separate and parallely acting classifiers: back-propagation neural network and binary decision tree classifiers; and (3) data fusion of results from preliminary classifiers to obtain the optimal performance in overall classification. Both the binary decision tree classifier and the fusion processing centers are implemented by neural network architectures. The fusion system configuration is a hierarchical neural network architecture, in which each functional neural net will handle different processing phases in a pipelined fashion. There is a total of around 13,500 samples for this analysis, of which 4 percent are used as the training set and 96 percent as the testing set. After training, this classification system is able to bring up the detection accuracy to 94 percent compared with 88 percent for back-propagation artificial neural networks and 80 percent for binary decision tree classifiers. The neural network data fusion classification is currently under progress to be integrated in an image processing system at NOAA and to be implemented in a prototype of a massively parallel and dynamically reconfigurable Modular Neural Ring (MNR)

    Corporate payments networks and credit risk rating

    Get PDF
    Aggregate and systemic risk in complex systems are emergent phenomena depending on two properties: the idiosyncratic risks of the elements and the topology of the network of interactions among them. While a significant attention has been given to aggregate risk assessment and risk propagation once the above two properties are given, less is known about how the risk is distributed in the network and its relations with the topology. We study this problem by investigating a large proprietary dataset of payments among 2.4M Italian firms, whose credit risk rating is known. We document significant correlations between local topological properties of a node (firm) and its risk. Moreover we show the existence of an homophily of risk, i.e. the tendency of firms with similar risk profile to be statistically more connected among themselves. This effect is observed when considering both pairs of firms and communities or hierarchies identified in the network. We leverage this knowledge to show the predictability of the missing rating of a firm using only the network properties of the associated node

    Third Conference on Artificial Intelligence for Space Applications, part 2

    Get PDF
    Topics relative to the application of artificial intelligence to space operations are discussed. New technologies for space station automation, design data capture, computer vision, neural nets, automatic programming, and real time applications are discussed

    A neutrino interaction with two vertices topology detected by OPERA

    Full text link
    The OPERA experiment has reported the detection of five ντ\nu_{\tau} candidates in the CNGS νμ\nu_{\mu} beam, allowing to reject the background-only hypothesis at the 5.1σ\sigma level. Besides these events, on May 23rd^{rd} 2011, OPERA detected a "neutral current like" interaction with two secondary vertices. Such topologies mainly arise from Charged Current interactions of a ντ\nu_{\tau} with associated charm quark production or from Neutral Current interactions of a νμ\nu_{\mu} with production of a charm anti-charm pair. These topologies have generally low probabilities. A dedicated multivariate analysis is in progress to allow discriminating between these two hypotheses. Here the event topology is described in detail and preliminary results of the classifiers for all possible contributions are given.Comment: Talk presented at NuPhys2015 (London, 16-18 December 2015). 4 pages, LaTeX, 2 eps figure

    Deep Information Networks

    Full text link
    We describe a novel classifier with a tree structure, designed using information theory concepts. This Information Network is made of information nodes, that compress the input data, and multiplexers, that connect two or more input nodes to an output node. Each information node is trained, independently of the others, to minimize a local cost function that minimizes the mutual information between its input and output with the constraint of keeping a given mutual information between its output and the target (information bottleneck). We show that the system is able to provide good results in terms of accuracy, while it shows many advantages in terms of modularity and reduced complexity
    corecore