1,842 research outputs found

    Notes on Exact Multi-Soliton Solutions of Noncommutative Integrable Hierarchies

    Get PDF
    We study exact multi-soliton solutions of integrable hierarchies on noncommutative space-times which are represented in terms of quasi-determinants of Wronski matrices by Etingof, Gelfand and Retakh. We analyze the asymptotic behavior of the multi-soliton solutions and found that the asymptotic configurations in soliton scattering process can be all the same as commutative ones, that is, the configuration of N-soliton solution has N isolated localized energy densities and the each solitary wave-packet preserves its shape and velocity in the scattering process. The phase shifts are also the same as commutative ones. Furthermore noncommutative toroidal Gelfand-Dickey hierarchy is introduced and the exact multi-soliton solutions are given.Comment: 18 pages, v3: references added, version to appear in JHE

    Emergence of chaotic behaviour in linearly stable systems

    Full text link
    Strong nonlinear effects combined with diffusive coupling may give rise to unpredictable evolution in spatially extended deterministic dynamical systems even in the presence of a fully negative spectrum of Lyapunov exponents. This regime, denoted as ``stable chaos'', has been so far mainly characterized by numerical studies. In this manuscript we investigate the mechanisms that are at the basis of this form of unpredictable evolution generated by a nonlinear information flow through the boundaries. In order to clarify how linear stability can coexist with nonlinear instability, we construct a suitable stochastic model. In the absence of spatial coupling, the model does not reveal the existence of any self-sustained chaotic phase. Nevertheless, already this simple regime reveals peculiar differences between the behaviour of finite-size and that of infinitesimal perturbations. A mean-field analysis of the truly spatially extended case clarifies that the onset of chaotic behaviour can be traced back to the diffusion process that tends to shift the growth rate of finite perturbations from the quenched to the annealed average. The possible characterization of the transition as the onset of directed percolation is also briefly discussed as well as the connections with a synchronization transition.Comment: 30 pages, 8 figures, Submitted to Journal of Physics

    Zero delay synchronization of chaos in coupled map lattices

    Full text link
    We show that two coupled map lattices that are mutually coupled to one another with a delay can display zero delay synchronization if they are driven by a third coupled map lattice. We analytically estimate the parametric regimes that lead to synchronization and show that the presence of mutual delays enhances synchronization to some extent. The zero delay or isochronal synchronization is reasonably robust against mismatches in the internal parameters of the coupled map lattices and we analytically estimate the synchronization error bounds.Comment: 9 pages, 9 figures ; To appear in Phys. Rev.

    Replicated INAR(1) processes

    Get PDF
    Replicated time series are a particular type of repeated measures, which consist of time-sequences of measurements taken from several subjects (experimental units). We consider independent replications of count time series that are modelled by first-order integer-valued autoregressive processes, INAR(1). In this work, we propose several estimation methods using the classical and the Bayesian approaches and both in time and frequency domains. Furthermore, we study the asymptotic properties of the estimators. The methods are illustrated and their performance is compared in a simulation study. Finally, the methods are applied to a set of observations concerning sunspot data.PRODEP II

    N-tree approximation for the largest Lyapunov exponent of a coupled-map lattice

    Full text link
    The N-tree approximation scheme, introduced in the context of random directed polymers, is here applied to the computation of the maximum Lyapunov exponent in a coupled map lattice. We discuss both an exact implementation for small tree-depth nn and a numerical implementation for larger nns. We find that the phase-transition predicted by the mean field approach shifts towards larger values of the coupling parameter when the depth nn is increased. We conjecture that the transition eventually disappears.Comment: RevTeX, 15 pages,5 figure

    Dynamics and perturbations in assisted chaotic inflation

    Get PDF
    On compactification from higher dimensions, a single free massive scalar field gives rise to a set of effective four-dimensional scalar fields, each with a different mass. These can cooperate to drive a period of inflation known as assisted inflation. We analyze the dynamics of the simplest implementation of this idea, paying particular attention to the decoupling of fields from the slow-roll regime as inflation proceeds. Unlike normal models of inflation, the dynamics does not become independent of the initial conditions at late times. In particular, we estimate the density perturbations obtained, which retain a memory of the initial conditions even though a homogeneous, spatially-flat Universe is generated.Comment: 10 pages, revtex, 2 figure

    The Kinetic Basis of Self-Organized Pattern Formation

    Full text link
    In his seminal paper on morphogenesis (1952), Alan Turing demonstrated that different spatio-temporal patterns can arise due to instability of the homogeneous state in reaction-diffusion systems, but at least two species are necessary to produce even the simplest stationary patterns. This paper is aimed to propose a novel model of the analog (continuous state) kinetic automaton and to show that stationary and dynamic patterns can arise in one-component networks of kinetic automata. Possible applicability of kinetic networks to modeling of real-world phenomena is also discussed.Comment: 8 pages, submitted to the 14th International Conference on the Synthesis and Simulation of Living Systems (Alife 14) on 23.03.2014, accepted 09.05.201
    • 

    corecore