987 research outputs found

    Forensic Face Recognition: A Survey

    Get PDF
    Beside a few papers which focus on the forensic aspects of automatic face recognition, there is not much published about it in contrast to the literature on developing new techniques and methodologies for biometric face recognition. In this report, we review forensic facial identification which is the forensic experts‟ way of manual facial comparison. Then we review famous works in the domain of forensic face recognition. Some of these papers describe general trends in forensics [1], guidelines for manual forensic facial comparison and training of face examiners who will be required to verify the outcome of automatic forensic face recognition system [2]. Some proposes theoretical framework for application of face recognition technology in forensics [3] and automatic forensic facial comparison [4, 5]. Bayesian framework is discussed in detail and it is elaborated how it can be adapted to forensic face recognition. Several issues related with court admissibility and reliability of system are also discussed. \ud Until now, there is no operational system available which automatically compare image of a suspect with mugshot database and provide result usable in court. The fact that biometric face recognition can in most cases be used for forensic purpose is true but the issues related to integration of technology with legal system of court still remain to be solved. There is a great need for research which is multi-disciplinary in nature and which will integrate the face recognition technology with existing legal systems. In this report we present a review of the existing literature in this domain and discuss various aspects and requirements for forensic face recognition systems particularly focusing on Bayesian framework

    Bayesian analysis of fingerprint, face and signature evidences with automatic biometric systems

    Full text link
    This is the author’s version of a work that was accepted for publication in Forensic Science International. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Forensic Science International, Vol 155, Issue 2 (20 December 2005) DOI: 10.1016/j.forsciint.2004.11.007The Bayesian approach provides a unified and logical framework for the analysis of evidence and to provide results in the form of likelihood ratios (LR) from the forensic laboratory to court. In this contribution we want to clarify how the biometric scientist or laboratory can adapt their conventional biometric systems or technologies to work according to this Bayesian approach. Forensic systems providing their results in the form of LR will be assessed through Tippett plots, which give a clear representation of the LR-based performance both for targets (the suspect is the author/source of the test pattern) and non-targets. However, the computation procedures of the LR values, especially with biometric evidences, are still an open issue. Reliable estimation techniques showing good generalization properties for the estimation of the between- and within-source variabilities of the test pattern are required, as variance restriction techniques in the within-source density estimation to stand for the variability of the source with the course of time. Fingerprint, face and on-line signature recognition systems will be adapted to work according to this Bayesian approach showing both the likelihood ratios range in each application and the adequacy of these biometric techniques to the daily forensic work.This work has been partially supported under MCYT Projects TIC2000-1683, TIC2000-1669, TIC2003-09068, TIC2003-08382 and Spanish Police Force ‘‘Guardia Civil’’ Research Program

    Likelihood Ratios for Deep Neural Networks in Face Comparison

    Get PDF
    In this study, we aim to compare the performance of systems and forensic facial comparison experts in terms of likelihood ratio computation to assess the potential of the machine to support the human expert in the courtroom. In forensics, transparency in the methods is essential. Consequently, state-of-the-art free software was preferred over commercial software. Three different open-source automated systems chosen for their availability and clarity were as follows: OpenFace, SeetaFace, and FaceNet; all three based on convolutional neural networks that return a distance (OpenFace, FaceNet) or similarity (SeetaFace). The returned distance or similarity is converted to a likelihood ratio using three different distribution fits: parametric fit Weibull distribution, nonparametric fit kernel density estimation, and isotonic regression with pool adjacent violators algorithm. The results show that with low-quality frontal images, automated systems have better performance to detect nonmatches than investigators: 100% of precision and specificity in confusion matrix against 89% and 86% obtained by investigators, but with good quality images forensic experts have better results. The rank correlation between investigators and software is around 80%. We conclude that the software can assist in reporting officers as it can do faster and more reliable comparisons with full-frontal images, which can help the forensic expert in casework

    Validation of likelihood ratio methods for forensic evidence evaluation handling multimodal score distributions

    Full text link
    This paper is a postprint of a paper submitted to and accepted for publication in IET Biometrics and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital LibraryThis article presents a method for computing Likelihood Ratios (LR) from multimodal score distributions produced by an Automated Fingerprint Identification System (AFIS) feature extraction and comparison algorithm. The AFIS algorithm used to compare fingermarks and fingerprints was primarily developed for forensic investigation rather than for forensic evaluation. The computation of the scores is speed-optimized and performed on three different stages, each of which outputs discriminating scores of different magnitudes together forming a multimodal score distribution. It is worthy mentioning that each fingermark to fingerprint comparison performed by the AFIS algorithm results in one single similarity score (e.g. one score per comparison). The multimodal nature of the similarity scores can be typical for other biometric systems and the method proposed in this work can be applied in similar cases, where the multimodal nature in similarity scores is observed. In this work we address some of the problems related to modelling such distributions and propose solutions to issues like data sparsity, dataset shift and over-fitting. The issues mentioned affect the methods traditionally used in the situation when a multimodal nature in the similarity scores is observed (a Kernel Density Functions (KDF) was used to illustrate these issues in our case). Furthermore, the method proposed produces interpretable results in the situations when the similarity scores are sparse and traditional approaches lead to erroneous LRs of huge magnitudesThe research was conducted in scope of the BBfor2 – Marie Curie Initial Training Network (FP7-PEOPLE-ITN-2008 under the Grant Agreement 238803) at the Netherlands Forensic Institute in cooperation with the ATVS Biometric Recognition Group at the Universidad Autonoma de Madrid and the National Police Services Agency of the Netherland

    Likelihood ratio data to report the validation of a forensic fingerprint evaluation method

    Get PDF
    Data to which the authors refer to throughout this article are likelihood ratios (LR) computed from the comparison of 5–12 minutiae fingermarks with fingerprints. These LRs data are used for the validation of a likelihood ratio (LR) method in forensic evidence evaluation. These data present a necessary asset for conducting validation experiments when validating LR methods used in forensic evidence evaluation and set up validation reports. These data can be also used as a baseline for comparing the fingermark evidence in the same minutiae configuration as presented in (D. Meuwly, D. Ramos, R. Haraksim,) [1], although the reader should keep in mind that different feature extraction algorithms and different AFIS systems used may produce different LRs values. Moreover, these data may serve as a reproducibility exercise, in order to train the generation of validation reports of forensic methods, according to [1]. Alongside the data, a justification and motivation for the use of methods is given. These methods calculate LRs from the fingerprint/mark data and are subject to a validation procedure. The choice of using real forensic fingerprint in the validation and simulated data in the development is described and justified. Validation criteria are set for the purpose of validation of the LR methods, which are used to calculate the LR values from the data and the validation report. For privacy and data protection reasons, the original fingerprint/mark images cannot be shared. But these images do not constitute the core data for the validation, contrarily to the LRs that are shared.The research was conducted in scope of the BBfor2 – European Commission Marie Curie Initial Training Network (FP7-PEOPLE-ITN 2008 under Grant Agreement 238803) in cooperation with The Netherlands Forensic Institute and the ATVS Biometric Recognition Group at the Universidad Autonoma de Madrid

    Making Likelihood Ratios Digestible for Cross-Application Performance Assessment

    Get PDF
    Performance estimation is crucial to the assessment of novel algorithms and systems. In detection error tradeoff (DET) diagrams, discrimination performance is solely assessed targeting one application, where cross-application performance considers risks resulting from decisions, depending on application constraints. For the purpose of interchangeability of research results across different application constraints, we propose to augment DET curves by depicting systems regarding their support of security and convenience levels. Therefore, application policies are aggregated into levels based on verbal likelihood ratio scales, providing an easy to use concept for business-to-business communication to denote operative thresholds. We supply a reference implementation in Python, an exemplary performance assessment on synthetic score distributions, and a fine-tuning scheme for Bayes decision thresholds, when decision policies are bounded rather than fi

    Discriminating Power of FISWG Characteristic Descriptors Under Different Forensic Use Cases

    Get PDF
    FISWG characteristic descriptors are facial features that can be used for evidence evaluation during forensic case work. In this paper we investigate the discriminating power of a biometric system that uses these characteristic descriptors as features under different forensic use cases. We show that in every forensic use case we can find characteristic descriptors that exhibit moderate to low discriminating power. In all but one use cases, a commercial face recognition system outperforms the characteristic descriptors. However, in low resolution surveillance camera images, some (combination of) characteristic descriptors yield better results than commercial systems
    • 

    corecore