901 research outputs found

    AutoAccel: Automated Accelerator Generation and Optimization with Composable, Parallel and Pipeline Architecture

    Full text link
    CPU-FPGA heterogeneous architectures are attracting ever-increasing attention in an attempt to advance computational capabilities and energy efficiency in today's datacenters. These architectures provide programmers with the ability to reprogram the FPGAs for flexible acceleration of many workloads. Nonetheless, this advantage is often overshadowed by the poor programmability of FPGAs whose programming is conventionally a RTL design practice. Although recent advances in high-level synthesis (HLS) significantly improve the FPGA programmability, it still leaves programmers facing the challenge of identifying the optimal design configuration in a tremendous design space. This paper aims to address this challenge and pave the path from software programs towards high-quality FPGA accelerators. Specifically, we first propose the composable, parallel and pipeline (CPP) microarchitecture as a template of accelerator designs. Such a well-defined template is able to support efficient accelerator designs for a broad class of computation kernels, and more importantly, drastically reduce the design space. Also, we introduce an analytical model to capture the performance and resource trade-offs among different design configurations of the CPP microarchitecture, which lays the foundation for fast design space exploration. On top of the CPP microarchitecture and its analytical model, we develop the AutoAccel framework to make the entire accelerator generation automated. AutoAccel accepts a software program as an input and performs a series of code transformations based on the result of the analytical-model-based design space exploration to construct the desired CPP microarchitecture. Our experiments show that the AutoAccel-generated accelerators outperform their corresponding software implementations by an average of 72x for a broad class of computation kernels

    A 2D DWT architecture suitable for the Embedded Zerotree Wavelet Algorithm

    Get PDF
    Digital Imaging has had an enormous impact on industrial applications such as the Internet and video-phone systems. However, demand for industrial applications is growing enormously. In particular, internet application users are, growing at a near exponential rate. The sharp increase in applications using digital images has caused much emphasis on the fields of image coding, storage, processing and communications. New techniques are continuously developed with the main aim of increasing efficiency. Image coding is in particular a field of great commercial interest. A digital image requires a large amount of data to be created. This large amount of data causes many problems when storing, transmitting or processing the image. Reducing the amount of data that can be used to represent an image is the main objective of image coding. Since the main objective is to reduce the amount of data that represents an image, various techniques have been developed and are continuously developed to increase efficiency. The JPEG image coding standard has enjoyed widespread acceptance, and the industry continues to explore its various implementation issues. However, recent research indicates multiresolution based image coding is a far superior alternative. A recent development in the field of image coding is the use of Embedded Zerotree Wavelet (EZW) as the technique to achieve image compression. One of The aims of this theses is to explain how this technique is superior to other current coding standards. It will be seen that an essential part orthis method of image coding is the use of multi resolution analysis, a subband system whereby the subbands arc logarithmically spaced in frequency and represent an octave band decomposition. The block structure that implements this function is termed the two dimensional Discrete Wavelet Transform (2D-DWT). The 20 DWT is achieved by several architectures and these are analysed in order to choose the best suitable architecture for the EZW coder. Finally, this architecture is implemented and verified using the Synopsys Behavioural Compiler and recommendations are made based on experimental findings

    Real Time Signal Processing Using Systolic Arrays

    Get PDF
    This thesis discusses and presents the design of systolic arrays used in modern real time signal processing. A methodology to map a given algorithm into a systolized VLSI implementation is described. The architectural alternatives for a given signal processing algorithm are discussed and investigated at a function level using a simulation package that has been developed using the “C” programming language. The similarities and differences between wavefront array processors and systolic array processors are presented

    A VLSI synthesis of a Reed-Solomon processor for digital communication systems

    Get PDF
    The Reed-Solomon codes have been widely used in digital communication systems such as computer networks, satellites, VCRs, mobile communications and high- definition television (HDTV), in order to protect digital data against erasures, random and burst errors during transmission. Since the encoding and decoding algorithms for such codes are computationally intensive, special purpose hardware implementations are often required to meet the real time requirements. -- One motivation for this thesis is to investigate and introduce reconfigurable Galois field arithmetic structures which exploit the symmetric properties of available architectures. Another is to design and implement an RS encoder/decoder ASIC which can support a wide family of RS codes. -- An m-programmable Galois field multiplier which uses the standard basis representation of the elements is first introduced. It is then demonstrated that the exponentiator can be used to implement a fast inverter which outperforms the available inverters in GF(2m). Using these basic structures, an ASIC design and synthesis of a reconfigurable Reed-Solomon encoder/decoder processor which implements a large family of RS codes is proposed. The design is parameterized in terms of the block length n, Galois field symbol size m, and error correction capability t for the various RS codes. The design has been captured using the VHDL hardware description language and mapped onto CMOS standard cells available in the 0.8-µm BiCMOS design kits for Cadence and Synopsys tools. The experimental chip contains 218,206 logic gates and supports values of the Galois field symbol size m = 3,4,5,6,7,8 and error correction capability t = 1,2,3, ..., 16. Thus, the block length n is variable from 7 to 255. Error correction t and Galois field symbol size m are pin-selectable. -- Since low design complexity and high throughput are desired in the VLSI chip, the algebraic decoding technique has been investigated instead of the time or transform domain. The encoder uses a self-reciprocal generator polynomial which structures the codewords in a systematic form. At the beginning of the decoding process, received words are initially stored in the first-in-first-out (FIFO) buffer as they enter the syndrome module. The Berlekemp-Massey algorithm is used to determine both the error locator and error evaluator polynomials. The Chien Search and Forney's algorithms operate sequentially to solve for the error locations and error values respectively. The error values are exclusive or-ed with the buffered messages in order to correct the errors, as the processed data leave the chip

    Application specific serial arithmetic arrays

    Get PDF
    High performance systolic arrays of serial-parallel multiplier elements may be rapidly constructed for specific applications by applying hardware description language techniques to a library of full-custom CMOS building blocks. Single clock pre-charged circuits have been implemented for these arrays at clock rates in excess of 100 Mhz using economical 2-micron (minimum feature size) CMOS processes, which may be quickly configured for a variety of applications. A number of application-specific arrays are presented, including a 2-D convolver for image processing, an integer polynomial solver, and a finite-field polynomial solver

    Effective network grid synthesis and optimization for high performance very large scale integration system design

    Get PDF
    制度:新 ; 文部省報告番号:甲2642号 ; 学位の種類:博士(工学) ; 授与年月日:2008/3/15 ; 早大学位記番号:新480
    corecore