89 research outputs found

    Two Structural Results for Low Degree Polynomials and Applications

    Get PDF
    In this paper, two structural results concerning low degree polynomials over finite fields are given. The first states that over any finite field F\mathbb{F}, for any polynomial ff on nn variables with degree dlog(n)/10d \le \log(n)/10, there exists a subspace of Fn\mathbb{F}^n with dimension Ω(dn1/(d1))\Omega(d \cdot n^{1/(d-1)}) on which ff is constant. This result is shown to be tight. Stated differently, a degree dd polynomial cannot compute an affine disperser for dimension smaller than Ω(dn1/(d1))\Omega(d \cdot n^{1/(d-1)}). Using a recursive argument, we obtain our second structural result, showing that any degree dd polynomial ff induces a partition of FnF^n to affine subspaces of dimension Ω(n1/(d1)!)\Omega(n^{1/(d-1)!}), such that ff is constant on each part. We extend both structural results to more than one polynomial. We further prove an analog of the first structural result to sparse polynomials (with no restriction on the degree) and to functions that are close to low degree polynomials. We also consider the algorithmic aspect of the two structural results. Our structural results have various applications, two of which are: * Dvir [CC 2012] introduced the notion of extractors for varieties, and gave explicit constructions of such extractors over large fields. We show that over any finite field, any affine extractor is also an extractor for varieties with related parameters. Our reduction also holds for dispersers, and we conclude that Shaltiel's affine disperser [FOCS 2011] is a disperser for varieties over F2F_2. * Ben-Sasson and Kopparty [SIAM J. C 2012] proved that any degree 3 affine disperser over a prime field is also an affine extractor with related parameters. Using our structural results, and based on the work of Kaufman and Lovett [FOCS 2008] and Haramaty and Shpilka [STOC 2010], we generalize this result to any constant degree

    Subspace Evasive Sets

    Full text link
    In this work we describe an explicit, simple, construction of large subsets of F^n, where F is a finite field, that have small intersection with every k-dimensional affine subspace. Interest in the explicit construction of such sets, termed subspace-evasive sets, started in the work of Pudlak and Rodl (2004) who showed how such constructions over the binary field can be used to construct explicit Ramsey graphs. More recently, Guruswami (2011) showed that, over large finite fields (of size polynomial in n), subspace evasive sets can be used to obtain explicit list-decodable codes with optimal rate and constant list-size. In this work we construct subspace evasive sets over large fields and use them to reduce the list size of folded Reed-Solomon codes form poly(n) to a constant.Comment: 16 page

    Bounded Indistinguishability for Simple Sources

    Get PDF

    Revisiting the Sanders-Freiman-Ruzsa Theorem in Fpn\mathbb{F}_p^n and its Application to Non-malleable Codes

    Full text link
    Non-malleable codes (NMCs) protect sensitive data against degrees of corruption that prohibit error detection, ensuring instead that a corrupted codeword decodes correctly or to something that bears little relation to the original message. The split-state model, in which codewords consist of two blocks, considers adversaries who tamper with either block arbitrarily but independently of the other. The simplest construction in this model, due to Aggarwal, Dodis, and Lovett (STOC'14), was shown to give NMCs sending k-bit messages to O(k7)O(k^7)-bit codewords. It is conjectured, however, that the construction allows linear-length codewords. Towards resolving this conjecture, we show that the construction allows for code-length O(k5)O(k^5). This is achieved by analysing a special case of Sanders's Bogolyubov-Ruzsa theorem for general Abelian groups. Closely following the excellent exposition of this result for the group F2n\mathbb{F}_2^n by Lovett, we expose its dependence on pp for the group Fpn\mathbb{F}_p^n, where pp is a prime

    Applications of Derandomization Theory in Coding

    Get PDF
    Randomized techniques play a fundamental role in theoretical computer science and discrete mathematics, in particular for the design of efficient algorithms and construction of combinatorial objects. The basic goal in derandomization theory is to eliminate or reduce the need for randomness in such randomized constructions. In this thesis, we explore some applications of the fundamental notions in derandomization theory to problems outside the core of theoretical computer science, and in particular, certain problems related to coding theory. First, we consider the wiretap channel problem which involves a communication system in which an intruder can eavesdrop a limited portion of the transmissions, and construct efficient and information-theoretically optimal communication protocols for this model. Then we consider the combinatorial group testing problem. In this classical problem, one aims to determine a set of defective items within a large population by asking a number of queries, where each query reveals whether a defective item is present within a specified group of items. We use randomness condensers to explicitly construct optimal, or nearly optimal, group testing schemes for a setting where the query outcomes can be highly unreliable, as well as the threshold model where a query returns positive if the number of defectives pass a certain threshold. Finally, we design ensembles of error-correcting codes that achieve the information-theoretic capacity of a large class of communication channels, and then use the obtained ensembles for construction of explicit capacity achieving codes. [This is a shortened version of the actual abstract in the thesis.]Comment: EPFL Phd Thesi

    Affine-malleable Extractors, Spectrum Doubling, and Application to Privacy Amplification

    Get PDF
    The study of seeded randomness extractors is a major line of research in theoretical computer science. The goal is to construct deterministic algorithms which can take a ``weak random source XX with min-entropy kk and a uniformly random seed YY of length dd, and outputs a string of length close to kk that is close to uniform and independent of YY. Dodis and Wichs~\cite{DW09} introduced a generalization of randomness extractors called non-malleable extractors (\nmExt) where \nmExt(X,Y) is close to uniform and independent of YY and \nmExt(X,f(Y)) for any function ff with no fixed points. We relax the notion of a non-malleable extractor and introduce what we call an affine-malleable extractor (\AmExt: \F^n \times \F^d \mapsto \F) where \AmExt(X,Y) is close to uniform and independent of YY and has some limited dependence of \AmExt(X,f(Y)) - that conditioned on YY, (\AmExt(X,Y), \AmExt(X,f(Y))) is close to (U,AU+B)(U, A \cdot U + B) where UU is uniformly distributed in \F and A, B \in \F are random variables independent of \F. We show under a plausible conjecture in additive combinatorics (called the Spectrum Doubling Conjecture) that the inner-product function \IP{\cdot,\cdot}:\F^n \times \F^n \mapsto \F is an affine-malleable extractor. As a modest justification of the conjecture, we show that a weaker version of the conjecture is implied by the widely believed Polynomial Freiman-Ruzsa conjecture. We also study the classical problem of privacy amplification, where two parties Alice and Bob share a weak secret XX of min-entropy kk, and wish to agree on secret key RR of length mm over a public communication channel completely controlled by a computationally unbounded attacker Eve. The main application of non-malleable extractors and its many variants has been in constructing secure privacy amplification protocols. We show that affine-malleable extractors along with affine-evasive sets can also be used to construct efficient privacy amplification protocols. We show that our protocol, under the Spectrum Doubling Conjecture, achieves near optimal parameters and achieves additional security properties like source privacy that have been the focus of some recent results in privacy amplification
    corecore