242 research outputs found

    Neuroimaging of structural pathology and connectomics in traumatic brain injury: Toward personalized outcome prediction.

    Get PDF
    Recent contributions to the body of knowledge on traumatic brain injury (TBI) favor the view that multimodal neuroimaging using structural and functional magnetic resonance imaging (MRI and fMRI, respectively) as well as diffusion tensor imaging (DTI) has excellent potential to identify novel biomarkers and predictors of TBI outcome. This is particularly the case when such methods are appropriately combined with volumetric/morphometric analysis of brain structures and with the exploration of TBI-related changes in brain network properties at the level of the connectome. In this context, our present review summarizes recent developments on the roles of these two techniques in the search for novel structural neuroimaging biomarkers that have TBI outcome prognostication value. The themes being explored cover notable trends in this area of research, including (1) the role of advanced MRI processing methods in the analysis of structural pathology, (2) the use of brain connectomics and network analysis to identify outcome biomarkers, and (3) the application of multivariate statistics to predict outcome using neuroimaging metrics. The goal of the review is to draw the community's attention to these recent advances on TBI outcome prediction methods and to encourage the development of new methodologies whereby structural neuroimaging can be used to identify biomarkers of TBI outcome

    Intersubject Regularity in the Intrinsic Shape of Human V1

    Full text link
    Previous studies have reported considerable intersubject variability in the three-dimensional geometry of the human primary visual cortex (V1). Here we demonstrate that much of this variability is due to extrinsic geometric features of the cortical folds, and that the intrinsic shape of V1 is similar across individuals. V1 was imaged in ten ex vivo human hemispheres using high-resolution (200 μm) structural magnetic resonance imaging at high field strength (7 T). Manual tracings of the stria of Gennari were used to construct a surface representation, which was computationally flattened into the plane with minimal metric distortion. The instrinsic shape of V1 was determined from the boundary of the planar representation of the stria. An ellipse provided a simple parametric shape model that was a good approximation to the boundary of flattened V1. The aspect ration of the best-fitting ellipse was found to be consistent across subject, with a mean of 1.85 and standard deviation of 0.12. Optimal rigid alignment of size-normalized V1 produced greater overlap than that achieved by previous studies using different registration methods. A shape analysis of published macaque data indicated that the intrinsic shape of macaque V1 is also stereotyped, and similar to the human V1 shape. Previoud measurements of the functional boundary of V1 in human and macaque are in close agreement with these results

    Multidirectional and Topography-based Dynamic-scale Varifold Representations with Application to Matching Developing Cortical Surfaces

    Get PDF
    The human cerebral cortex is marked by great complexity as well as substantial dynamic changes during early postnatal development. To obtain a fairly comprehensive picture of its age-induced and/or disorder-related cortical changes, one needs to match cortical surfaces to one another, while maximizing their anatomical alignment. Methods that geodesically shoot surfaces into one another as currents (a distribution of oriented normals) and varifolds (a distribution of non-oriented normals) provide an elegant Riemannian framework for generic surface matching and reliable statistical analysis. However, both conventional current and varifold matching methods have two key limitations. First, they only use the normals of the surface to measure its geometry and guide the warping process, which overlooks the importance of the orientations of the inherently convoluted cortical sulcal and gyral folds. Second, the ‘conversion’ of a surface into a current or a varifold operates at a fixed scale under which geometric surface details will be neglected, which ignores the dynamic scales of cortical foldings. To overcome these limitations and improve varifold-based cortical surface registration, we propose two different strategies. The first strategy decomposes each cortical surface into its normal and tangent varifold representations, by integrating principal curvature direction field into the varifold matching framework, thus providing rich information of the orientation of cortical folding and better characterization of the complex cortical geometry. The second strategy explores the informative cortical geometric features to perform a dynamic-scale measurement of the cortical surface that depends on the local surface topography (e.g., principal curvature), thereby we introduce the concept of a topography-based dynamic-scale varifold. We tested the proposed varifold variants for registering 12 pairs of dynamically developing cortical surfaces from 0 to 6 months of age. Both variants improved the matching accuracy in terms of closeness to the target surface and the goodness of alignment with regional anatomical boundaries, when compared with three state-of-the-art methods: (1) diffeomorphic spectral matching, (2) conventional current-based surface matching, and (3) conventional varifold-based surface matching

    Computational Anatomy for Multi-Organ Analysis in Medical Imaging: A Review

    Full text link
    The medical image analysis field has traditionally been focused on the development of organ-, and disease-specific methods. Recently, the interest in the development of more 20 comprehensive computational anatomical models has grown, leading to the creation of multi-organ models. Multi-organ approaches, unlike traditional organ-specific strategies, incorporate inter-organ relations into the model, thus leading to a more accurate representation of the complex human anatomy. Inter-organ relations are not only spatial, but also functional and physiological. Over the years, the strategies 25 proposed to efficiently model multi-organ structures have evolved from the simple global modeling, to more sophisticated approaches such as sequential, hierarchical, or machine learning-based models. In this paper, we present a review of the state of the art on multi-organ analysis and associated computation anatomy methodology. The manuscript follows a methodology-based classification of the different techniques 30 available for the analysis of multi-organs and multi-anatomical structures, from techniques using point distribution models to the most recent deep learning-based approaches. With more than 300 papers included in this review, we reflect on the trends and challenges of the field of computational anatomy, the particularities of each anatomical region, and the potential of multi-organ analysis to increase the impact of 35 medical imaging applications on the future of healthcare.Comment: Paper under revie

    Segmentation of medical images under topological constraints

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2006.Includes bibliographical references (p. 135-142).Major advances in the field of medical imaging over the past two decades have provided physicians with powerful, non-invasive techniques to probe the structure, function, and pathology of the human body. This increasingly vast and detailed amount of information constitutes a great challenge for the medical imaging community, and requires significant innovations in all aspect of image processing. To achieve accurate and topologically-correct delineations of anatomical structures from medical images is a critical step for many clinical and research applications. In this thesis, we extend the theoretical tools applicable to the segmentation of images under topological control, apply these new concepts to broaden the class of segmentation methodologies, and develop generally applicable and well-founded algorithms to achieve accurate segmentations of medical images under topological constraints. First, we introduce a digital concept that offers more flexibility in controlling the topology of digital segmentations. Second, we design a level set framework that offers a subtle control over the topology of the level set components. Our method constitutes a trade-off between traditional level sets and topology-preserving level sets.(cont.) Third, we develop an algorithm for the retrospective topology correction of 3D digital segmentations. Our method is nested in the theory of Bayesian parameter estimation, and integrates statistical information into the topology correction process. In addition, no assumption is made on the topology of the initial input images. Finally, we propose a genetic algorithm to accurately correct the spherical topology of cortical surfaces. Unlike existing approaches, our method is able to generate several potential topological corrections and to select the maximum-a-posteriori retessellation in a Bayesian framework. Our approach integrates statistical, geometrical, and shape information into the correction process, providing optimal solutions relatively to the MRI intensity profile and the expected curvature.by Florent Ségonne.Ph.D

    Atlas-Free Surface Reconstruction of the Cortical Grey-White Interface in Infants

    Get PDF
    BACKGROUND: The segmentation of the cortical interface between grey and white matter in magnetic resonance images (MRI) is highly challenging during the first post-natal year. First, the heterogeneous brain maturation creates important intensity fluctuations across regions. Second, the cortical ribbon is highly folded creating complex shapes. Finally, the low tissue contrast and partial volume effects hamper cortex edge detection in parts of the brain. METHODS AND FINDINGS: We present an atlas-free method for segmenting the grey-white matter interface of infant brains in T2-weighted (T2w) images. We used a broad characterization of tissue using features based not only on local contrast but also on geometric properties. Furthermore, inaccuracies in localization were reduced by the convergence of two evolving surfaces located on each side of the inner cortical surface. Our method has been applied to eleven brains of one- to four-month-old infants. Both quantitative validations against manual segmentations and sulcal landmarks demonstrated good performance for infants younger than two months old. Inaccuracies in surface reconstruction increased with age in specific brain regions where the tissue contrast decreased with maturation, such as in the central region. CONCLUSIONS: We presented a new segmentation method which achieved good to very good performance at the grey-white matter interface depending on the infant age. This method should reduce manual intervention and could be applied to pathological brains since it does not require any brain atlas

    Statistical Study on Cortical Sulci of Human Brains

    Full text link
    Abstract. A method for building a statistical shape model of sulci of the human brain cortex is described. The model includes sulcal fundi that are defined on a spherical map of the cortex. The sulcal fundi are first extracted in a semi-automatic way using an extension of the fast march-ing method. They are then transformed to curves on the unit sphere via a conformal mapping method that maps each cortical point to a point on the unit sphere. The curves that represent sulcal fundi are parameterized with piecewise constant-speed parameterizations. Intermediate points on these curves correspond to sulcal landmarks, which are used to build a point distribution model on the unit sphere. Statistical information of local properties of the sulci, such as curvature and depth, are embedded in the model. Experimental results are presented to show how the models are built.
    • …
    corecore