17,957 research outputs found

    Comparison of 3D scanned human models for off-body communications using motion capture

    Get PDF
    Body area networks are complex to analyze as there are several channel mechanisms occurring simultaneously, i.e. environmental multipath together with body motion and close coupling between worn antennas and human tissue. Electromagnetic (EM) simulation is an important tool since not all studies can be done on a real human. In order to gain insight into off-body communication involving a worn antenna, this paper uses a 3D animated model obtained from a 3D surface scanner and a motion capture system for full wave simulation of channels at 2.45 and 5.5GHz. To evaluate if the model can represent body area radio channels in general, a comparison of S21 of the simulated model with measurements from 5 other models of similar height to the main test subject is presented

    3D performance capture for facial animation

    Get PDF
    This work describes how a photogrammetry based 3D capture system can be used as an input device for animation. The 3D Dynamic Capture System is used to capture the motion of a human face, which is extracted from a sequence of 3D models captured at TV frame rate. Initially the positions of a set of landmarks on the face are extracted. These landmarks are then used to provide motion data in two different ways. First, a high level description of the movements is extracted, and these can be used as input to a procedural animation package (i.e. CreaToon). Second the landmarks can be used as registration points for a conformation process where the model to be animated is modified to match the captured model. This approach gives a new sequence of models, which have the structure of the drawn model but the movement of the captured sequence

    Ultrax:An Animated Midsagittal Vocal Tract Display for Speech Therapy

    Get PDF
    Speech sound disorders (SSD) are the most common communication impairment in childhood, and can hamper social development and learning. Current speech therapy interventions rely predominantly on the auditory skills of the child, as little technology is available to assist in diagnosis and therapy of SSDs. Realtime visualisation of tongue movements has the potential to bring enormous benefit to speech therapy. Ultrasound scanning offers this possibility, although its display may be hard to interpret. Our ultimate goal is to exploit ultrasound to track tongue movement, while displaying a simplified, diagrammatic vocal tract that is easier for the user to interpret. In this paper, we outline a general approach to this problem, combining a latent space model with a dimensionality reducing model of vocal tract shapes. We assess the feasibility of this approach using magnetic resonance imaging (MRI) scans to train a model of vocal tract shapes, which is animated using electromagnetic articulography (EMA) data from the same speaker. Index Terms: Ultrasound, speech therapy, vocal tract visualisation 1

    Shape Animation with Combined Captured and Simulated Dynamics

    Get PDF
    We present a novel volumetric animation generation framework to create new types of animations from raw 3D surface or point cloud sequence of captured real performances. The framework considers as input time incoherent 3D observations of a moving shape, and is thus particularly suitable for the output of performance capture platforms. In our system, a suitable virtual representation of the actor is built from real captures that allows seamless combination and simulation with virtual external forces and objects, in which the original captured actor can be reshaped, disassembled or reassembled from user-specified virtual physics. Instead of using the dominant surface-based geometric representation of the capture, which is less suitable for volumetric effects, our pipeline exploits Centroidal Voronoi tessellation decompositions as unified volumetric representation of the real captured actor, which we show can be used seamlessly as a building block for all processing stages, from capture and tracking to virtual physic simulation. The representation makes no human specific assumption and can be used to capture and re-simulate the actor with props or other moving scenery elements. We demonstrate the potential of this pipeline for virtual reanimation of a real captured event with various unprecedented volumetric visual effects, such as volumetric distortion, erosion, morphing, gravity pull, or collisions
    corecore