2,220 research outputs found

    From (Quantified) Boolean Formulae to Answer Set Programming

    Get PDF
    We propose in this article a translation from quantified Boolean formulae to answer set programming. The computation of a solution of a quantified Boolean formula is then equivalent to the computation of a stable model for a normal logic program. The case of unquantified Boolean formulae is also considered since it is equivalent to the case of quantified Boolean formulae with only existential quantifiers

    From (Quantified) Boolean Formulas to Answer Set Programming

    Get PDF
    We propose in this article a translation from Quantified Boolean Formulae to Answer Set Programming. The computation of a solution of a Quantified Boolean Formula is then equivalent to the computation of a stable model for a normal logic program. The case of unquantified Boolean formulae is also considered since it is equivalent to the case of Quantified Boolean Formulae with only existential quantifiers

    Compilation for QCSP

    Get PDF
    We propose in this article a framework for compilation of quantified constraint satisfaction problems (QCSP). We establish the semantics of this formalism by an interpretation to a QCSP. We specify an algorithm to compile a QCSP embedded into a search algorithm and based on the inductive semantics of QCSP. We introduce an optimality property and demonstrate the optimality of the interpretation of the compiled QCSP.Comment: Proceedings of the 13th International Colloquium on Implementation of Constraint LOgic Programming Systems (CICLOPS 2013), Istanbul, Turkey, August 25, 201

    A Polynomial Translation of Logic Programs with Nested Expressions into Disjunctive Logic Programs: Preliminary Report

    Full text link
    Nested logic programs have recently been introduced in order to allow for arbitrarily nested formulas in the heads and the bodies of logic program rules under the answer sets semantics. Nested expressions can be formed using conjunction, disjunction, as well as the negation as failure operator in an unrestricted fashion. This provides a very flexible and compact framework for knowledge representation and reasoning. Previous results show that nested logic programs can be transformed into standard (unnested) disjunctive logic programs in an elementary way, applying the negation as failure operator to body literals only. This is of great practical relevance since it allows us to evaluate nested logic programs by means of off-the-shelf disjunctive logic programming systems, like DLV. However, it turns out that this straightforward transformation results in an exponential blow-up in the worst-case, despite the fact that complexity results indicate that there is a polynomial translation among both formalisms. In this paper, we take up this challenge and provide a polynomial translation of logic programs with nested expressions into disjunctive logic programs. Moreover, we show that this translation is modular and (strongly) faithful. We have implemented both the straightforward as well as our advanced transformation; the resulting compiler serves as a front-end to DLV and is publicly available on the Web.Comment: 10 pages; published in Proceedings of the 9th International Workshop on Non-Monotonic Reasonin

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    A set-based reasoner for the description logic \shdlssx (Extended Version)

    Full text link
    We present a \ke-based implementation of a reasoner for a decidable fragment of (stratified) set theory expressing the description logic \dlssx (\shdlssx, for short). Our application solves the main TBox and ABox reasoning problems for \shdlssx. In particular, it solves the consistency problem for \shdlssx-knowledge bases represented in set-theoretic terms, and a generalization of the \emph{Conjunctive Query Answering} problem in which conjunctive queries with variables of three sorts are admitted. The reasoner, which extends and optimizes a previous prototype for the consistency checking of \shdlssx-knowledge bases (see \cite{cilc17}), is implemented in \textsf{C++}. It supports \shdlssx-knowledge bases serialized in the OWL/XML format, and it admits also rules expressed in SWRL (Semantic Web Rule Language).Comment: arXiv admin note: text overlap with arXiv:1804.11222, arXiv:1707.07545, arXiv:1702.0309
    • …
    corecore