492 research outputs found

    Location-Based Social Networks: Latent Topics Mining and Hybrid Trust-Based Recommendation

    Get PDF
    The rapid advances of the 4th generation mobile networks, social media and the ubiquity of the advanced mobile devices in which GPS modules are embedded have enabled the location-based services, especially the Location-Based Social Networks (LBSNs) such as Foursquare and Facebook Places. LBSNs have been attracting more and more users by providing services that integrate social activities with geographic information. In LBSNs, a user can explore places of interests around his current location, check in at these venues and also selectively share his check-ins with the public or his friends. LBSNs have accumulated large amounts of information related to personal or social activities along with their associated location information. Analyzing and mining LBSN information are important to understand human preferences related to locations and their mobility patterns. Therefore, in this thesis, we aim to understand the human mobility behavior and patterns based on huge amounts of information available on LBSNs and provide a hybrid trust-based POI recommendation for LBSN users. In this dissertation, we first carry out a comprehensive and quantitative analysis about venue popularity based on a cumulative dataset collected from greater Pittsburgh area in Foursquare. It provides a general understanding of the online population's preferences on locations. Then, we employ a probabilistic graphical model to mine the check-in dataset to discover the local geographic topics that capture the potential and intrinsic relations among the locations in accordance with users' check-in histories. We also investigate the local geographic topics with different temporal aspects. Moreover, we explore the geographic topics based on travelers' check-ins. The proposed approach for mining the latent geographic topics successfully addresses the challenges of understanding location preferences of groups of users. Lastly, we focus on individual user's preferences of locations and propose a hybrid trust-based POI recommendation algorithm in this thesis. The proposed approach integrates the trust based on both users' social relationship and users' check-in behavior to provide POI recommendations. We implement the proposed hybrid trust-based recommendation algorithm and evaluate it based on the Foursquare dataset and the experimental results show good performances of our proposed algorithm

    SgWalk: Location Recommendation by User Subgraph-Based Graph Embedding

    Get PDF
    Popularity of Location-based Social Networks (LBSNs) provides an opportunity to collect massive multi-modal datasets that contain geographical information, as well as time and social interactions. Such data is a useful resource for generating personalized location recommendations. Such heterogeneous data can be further extended with notions of trust between users, the popularity of locations, and the expertise of users. Recently the use of Heterogeneous Information Network (HIN) models and graph neural architectures have proven successful for recommendation problems. One limitation of such a solution is capturing the contextual relationships between the nodes in the heterogeneous network. In location recommendation, spatial context is a frequently used consideration such that users prefer to get recommendations within their spatial vicinity. To solve this challenging problem, we propose a novel Heterogeneous Information Network (HIN) embedding technique, SgWalk, which explores the proximity between users and locations and generates location recommendations via subgraph-based node embedding. SgWalk follows four steps: building users subgraphs according to location context, generating random walk sequences over user subgraphs, learning embeddings of nodes in LBSN graph, and generating location recommendations using vector representation of the nodes. SgWalk is differentiated from existing techniques relying on meta-path or bi-partite graphs by means of utilizing the contextual user subgraph. In this way, it is aimed to capture contextual relationships among heterogeneous nodes more effectively. The recommendation accuracy of SgWalk is analyzed through extensive experiments conducted on benchmark datasets in terms of top-n location recommendations. The accuracy evaluation results indicate minimum 23% (@5 recommendation) average improvement in accuracy compared to baseline techniques and the state-of-the-art heterogeneous graph embedding techniques in the literature

    Exploration de la dynamique humaine basée sur des données massives de réseaux sociaux de géolocalisation : analyse et applications

    Get PDF
    Human dynamics is an essential aspect of human centric computing. As a transdisciplinary research field, it focuses on understanding the underlying patterns, relationships, and changes of human behavior. By exploring human dynamics, we can understand not only individual’s behavior, such as a presence at a specific place, but also collective behaviors, such as social movement. Understanding human dynamics can thus enable various applications, such as personalized location based services. However, before the availability of ubiquitous smart devices (e.g., smartphones), it is practically hard to collect large-scale human behavior data. With the ubiquity of GPS-equipped smart phones, location based social media has gained increasing popularity in recent years, making large-scale user activity data become attainable. Via location based social media, users can share their activities as real-time presences at Points of Interests (POIs), such as a restaurant or a bar, within their social circles. Such data brings an unprecedented opportunity to study human dynamics. In this dissertation, based on large-scale location centric social media data, we study human dynamics from both individual and collective perspectives. From individual perspective, we study user preference on POIs with different granularities and its applications in personalized location based services, as well as the spatial-temporal regularity of user activities. From collective perspective, we explore the global scale collective activity patterns with both country and city granularities, and also identify their correlations with diverse human culturesLa dynamique humaine est un sujet essentiel de l'informatique centrée sur l’homme. Elle se concentre sur la compréhension des régularités sous-jacentes, des relations, et des changements dans les comportements humains. En analysant la dynamique humaine, nous pouvons comprendre non seulement des comportements individuels, tels que la présence d’une personne à un endroit précis, mais aussi des comportements collectifs, comme les mouvements sociaux. L’exploration de la dynamique humaine permet ainsi diverses applications, entre autres celles des services géo-dépendants personnalisés dans des scénarios de ville intelligente. Avec l'omniprésence des smartphones équipés de GPS, les réseaux sociaux de géolocalisation ont acquis une popularité croissante au cours des dernières années, ce qui rend les données de comportements des utilisateurs disponibles à grande échelle. Sur les dits réseaux sociaux de géolocalisation, les utilisateurs peuvent partager leurs activités en temps réel avec par l'enregistrement de leur présence à des points d'intérêt (POIs), tels qu’un restaurant. Ces données d'activité contiennent des informations massives sur la dynamique humaine. Dans cette thèse, nous explorons la dynamique humaine basée sur les données massives des réseaux sociaux de géolocalisation. Concrètement, du point de vue individuel, nous étudions la préférence de l'utilisateur quant aux POIs avec des granularités différentes et ses applications, ainsi que la régularité spatio-temporelle des activités des utilisateurs. Du point de vue collectif, nous explorons la forme d'activité collective avec les granularités de pays et ville, ainsi qu’en corrélation avec les cultures globale
    • …
    corecore