2,544 research outputs found

    Activity Report: Automatic Control 1997

    Get PDF

    Hybrid modeling and control of mechatronic systems using a piecewise affine dynamics approach

    Get PDF
    This thesis investigates the topic of modeling and control of PWA systems based on two experimental cases of an electrical and hydraulic nature with varying complexity that were also built, instrumented and evaluated. A full-order model has been created for both systems, including all dominant system dynamics and non-linearities. The unknown parameters and characteristics have been identi ed via an extensive parameter identi cation. In the following, the non-linear characteristics are linearized at several points, resulting in PWA models for each respective setup. Regarding the closed loop control of the generated models and corresponding experimental setups, a linear control structure comprised of integral error, feed-forward and state-feedback control has been used. Additionally, the hydraulic setup has been controlled in an autonomous hybrid position/force control mode, resulting in a switched system with each mode's dynamics being de ned by the previously derived PWA-based model in combination with the control structure and respective mode-dependent controller gains. The autonomous switch between control modes has been de ned by a switching event capable of consistently switching between modes in a deterministic manner despite the noise-a icted measurements. Several methods were used to obtain suitable controller gains, including optimization routines and pole placement. Validation of the system's fast and accurate response was obtained through simulations and experimental evaluation. The controlled system's local stability was proven for regions in state-space associated with operational points by using pole-zero analysis. The stability of the hybrid control approach was proven by using multiple Lyapunov functions for the investigated test scenarios.publishedVersio

    Control strategies for robotic manipulators

    Get PDF
    This survey is aimed at presenting the major robust control strategies for rigid robot manipulators. The techniques discussed are feedback linearization/Computed torque control, Variable structure compensator, Passivity based approach and Disturbance observer based control. The first one is based on complete dynamic model of a robot. It results in simple linear control which offers guaranteed stability. Variable structure compensator uses a switching/relay action to overcome dynamic uncertainties and disturbances. Passivity based controller make use of passive structure of a robot. If passivity of a feedback system is proved, nonlinearities and uncertainties will not affect the stability. Disturbance observer based controllers estimate disturbances, which can be cancelled out to achieve a nominal model, for which a simple controller can then be designed. This paper, after explaining each control strategy in detail, finally compares these strategies for their pros and cons. Possible solutions to cope with the drawbacks have also been presented in tabular form. © 2012 IEEE

    Modeling of precision motion control systems: a relay feedback approach

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Finite-Time Integral Sliding Mode Control for Motion Control of Permanent-Magnet Linear Motors

    Get PDF
    The finite-time motion control problem of permanent-magnet linear motor (PMLM) is studied in this paper. Firstly, based on finite-time integral sliding mode (FTISM) technique, a finite-time control (FTC) law is proposed such that the PMLM can track the desired trajectory in finite time in the presence of disturbances. Secondly, to alleviate the chattering caused by discontinuous property of the control law, a novel saturation function is introduced to replace the signum function in the proposed FTC law. Finally, the effectiveness of the proposed method is shown by simulation results and comparisons

    Activity Report: Automatic Control 1992-1993

    Get PDF

    Direct torque control for cable conduit mechanisms for the robotic foot for footwear testing

    Get PDF
    © 2018 Elsevier Ltd As the shoe durability is affected directly by the dynamic force/pressure between the shoe and its working environments (i.e., the contact ground and the human foot), a footwear testing system should replicate correctly this interaction force profile during gait cycles. Thus, in developing a robotic foot for footwear testing, it is important to power multiple foot joints and to control their output torque to produce correct dynamic effects on footwear. The cable conduit mechanism (CCM) offers great advantages for designing this robotic foot. It not only eliminates the cumbersome actuators and significant inertial effects from the fast-moving robotic foot but also allows a large amount of energy/force to be transmitted/propagated to the compact robotic foot. However, CCMs cause nonlinearities and hysteresis effects to the system performance. Recent studies on CCMs and hysteresis systems mostly addressed the position control. This paper introduces a new approach for modelling the torque transmission and controlling the output torque of a pair of CCMs, which are used to actuate the robotic foot for footwear testing. The proximal torque is used as the input signal for the Bouc–Wen hysteresis model to portray the torque transmission profile while a new robust adaptive control scheme is developed to online estimate and compensate for the nonlinearities and hysteresis effects. Both theoretical proof of stability and experimental validation of the new torque controller have been carried out and reported in this paper. Control experiments of other closed-loop control algorithms have been also conducted to compare their performance with the new controller effectiveness. Qualitative and quantitative results show that the new control approach significantly enhances the torque tracking performance for the system preceded by CCMs

    Activity Report: Automatic Control 1999

    Get PDF

    Design and control of laser micromachining workstation

    Get PDF
    The production process of miniature devices and microsystems requires the utilization of non-conventional micromachining techniques. In the past few decades laser micromachining has became micro-manufacturing technique of choice for many industrial and research applications. This paper discusses the design of motion control system for a laser micromachining workstation with particulars about automatic focusing and control of work platform used in the workstation. The automatic focusing is solved in a sliding mode optimization framework and preview controller is used to control the motion platform. Experimental results of both motion control and actual laser micromachining are presented
    corecore