63 research outputs found

    Integrating the Local Property and Topological Structure in the Minimum Spanning Tree Brain Functional Network for Classification of Early Mild Cognitive Impairment

    Get PDF
    Abnormalities in the brain connectivity in patients with neurodegenerative diseases, such as early mild cognitive impairment (EMCI), have been widely reported. Current research shows that the combination of multiple features of the threshold connectivity network can improve the classification accuracy of diseases. However, in the construction of the threshold connectivity network, the selection of the threshold is very important, and an unreasonable setting can seriously affect the final classification results. Recent neuroscience research suggests that the minimum spanning tree (MST) brain functional network is helpful, as it avoids the methodological biases while comparing networks. In this paper, by employing the multikernel method, we propose a framework to integrate the multiple properties of the MST brain functional network for improving the classification performance. Initially, the Kruskal algorithm was used to construct an unbiased MST brain functional network. Subsequently, the vector kernel and graph kernel were used to quantify the two different complementary properties of the network, such as the local connectivity property and the topological property. Finally, the multikernel support vector machine (SVM) was adopted to combine the two different kernels for EMCI classification. We tested the performance of our proposed method for Alzheimer's Disease Neuroimaging Initiative (ANDI) datasets. The results showed that our method achieved a significant performance improvement, with the classification accuracy of 85%. The abnormal brain regions included the right hippocampus, left parahippocampal gyrus, left posterior cingulate gyrus, middle temporal gyrus, and other regions that are known to be important in the EMCI. Our results suggested that, combining the multiple features of the MST brain functional connectivity offered a better classification performance in the EMCI

    Brain multiplexes reveal morphological connectional biomarkers fingerprinting late brain dementia states

    Get PDF
    Accurate diagnosis of mild cognitive impairment (MCI) before conversion to Alzheimer\u27s disease (AD) is invaluable for patient treatment. Many works showed that MCI and AD affect functional and structural connections between brain regions as well as the shape of cortical regions. However, \u27shape connections\u27 between brain regions are rarely investigated -e.g., how morphological attributes such as cortical thickness and sulcal depth of a specific brain region change in relation to morphological attributes in other regions. To fill this gap, we unprecedentedly design morphological brain multiplexes for late MCI/AD classification. Specifically, we use structural T1-w MRI to define morphological brain networks, each quantifying similarity in morphology between different cortical regions for a specific cortical attribute. Then, we define a brain multiplex where each intra-layer represents the morphological connectivity network of a specific cortical attribute, and each inter-layer encodes the similarity between two consecutive intra-layers. A significant performance gain is achieved when using the multiplex architecture in comparison to other conventional network analysis architectures. We also leverage this architecture to discover morphological connectional biomarkers fingerprinting the difference between late MCI and AD stages, which included the right entorhinal cortex and right caudal middle frontal gyrus

    Multiplexity of human brain oscillations as a personal brain signature

    Get PDF
    Human individuality is likely underpinned by the constitution of functional brain networks that ensure consistency of each person's cognitive and behavioral profile. These functional networks should, in principle, be detectable by noninvasive neurophysiology. We use a method that enables the detection of dominant frequencies of the interaction between every pair of brain areas at every temporal segment of the recording period, the dominant coupling modes (DoCM). We apply this method to brain oscillations, measured with magnetoencephalography (MEG) at rest in two independent datasets, and show that the spatiotemporal evolution of DoCMs constitutes an individualized brain fingerprint. Based on this successful fingerprinting we suggest that DoCMs are important targets for the investigation of neural correlates of individual psychological parameters and can provide mechanistic insight into the underlying neurophysiological processes, as well as their disturbance in brain diseases

    Aberrant MEG multi-frequency phase temporal synchronization predicts conversion from mild cognitive impairment-to-Alzheimer's disease

    Get PDF
    Many neuroimaging studies focus on a frequency-specific or a multi-frequency network analysis showing that functional brain networks are disrupted in patients with Alzheimer's disease (AD). Although those studies enriched our knowledge of the impact of AD in brain's functionality, our goal is to test the effectiveness of combining neuroimaging with network neuroscience to predict with high accuracy subjects with mild cognitive impairment (MCI) that will convert to AD. In this study, eyes-closed resting-state magnetoencephalography (MEG) recordings from 27 stable MCI (sMCI) and 27 progressive MCI (pMCI) from two scan sessions (baseline and follow-up after approximately 3 years) were projected via beamforming onto an atlas-based set of regions of interest (ROIs). Dynamic functional connectivity networks were constructed independently for the five classical frequency bands while a multivariate phase-based coupling metric was adopted. Thus, computing the distance between the fluctuation of functional strength of every pair of ROIs between the two conditions with dynamic time wrapping (DTW), a large set of features was extracted. A machine learning algorithm revealed 49 DTW-based features in the five frequency bands that can distinguish the sMCI from pMCI with absolute accuracy (100%). Further analysis of the selected links revealed that most of the connected ROIs were part of the default mode network (DMN), the cingulo-opercular (CO), the fronto-parietal and the sensorimotor network. Overall, our dynamic network multi-frequency analysis approach provides an effective framework of constructing a sensitive MEG-based connectome biomarker for the prediction of conversion from MCI to Alzheimer's disease

    Aberrant MEG multi-frequency phase temporal synchronization predicts conversion from mild cognitive impairment-to-Alzheimer's disease

    Get PDF
    Many neuroimaging studies focus on a frequency-specific or a multi-frequency network analysis showing that functional brain networks are disrupted in patients with Alzheimer's disease (AD). Although those studies enriched our knowledge of the impact of AD in brain's functionality, our goal is to test the effectiveness of combining neuroimaging with network neuroscience to predict with high accuracy subjects with mild cognitive impairment (MCI) that will convert to AD. In this study, eyes-closed resting-state magnetoencephalography (MEG) recordings from 27 stable MCI (sMCI) and 27 progressive MCI (pMCI) from two scan sessions (baseline and follow-up after approximately 3 years) were projected via beamforming onto an atlas-based set of regions of interest (ROIs). Dynamic functional connectivity networks were constructed independently for the five classical frequency bands while a multivariate phase-based coupling metric was adopted. Thus, computing the distance between the fluctuation of functional strength of every pair of ROIs between the two conditions with dynamic time wrapping (DTW), a large set of features was extracted. A machine learning algorithm revealed 49 DTW-based features in the five frequency bands that can distinguish the sMCI from pMCI with absolute accuracy (100%). Further analysis of the selected links revealed that most of the connected ROIs were part of the default mode network (DMN), the cingulo-opercular (CO), the fronto-parietal and the sensorimotor network. Overall, our dynamic network multi-frequency analysis approach provides an effective framework of constructing a sensitive MEG-based connectome biomarker for the prediction of conversion from MCI to Alzheimer's disease

    Artificial Intelligence Framework Identifies Candidate Targets for Drug Repurposing in Alzheimer’s Disease

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified numerous susceptibility loci for Alzheimer’s disease (AD). However, utilizing GWAS and multi-omics data to identify high-confidence AD risk genes (ARGs) and druggable targets that can guide development of new therapeutics for patients suffering from AD has heretofore not been successful. Methods: To address this critical problem in the field, we have developed a network-based artificial intelligence framework that is capable of integrating multi-omics data along with human protein–protein interactome networks to accurately infer accurate drug targets impacted by GWAS-identified variants to identify new therapeutics. When applied to AD, this approach integrates GWAS findings, multi-omics data from brain samples of AD patients and AD transgenic animal models, drug-target networks, and the human protein–protein interactome, along with large-scale patient database validation and in vitro mechanistic observations in human microglia cells. Results: Through this approach, we identified 103 ARGs validated by various levels of pathobiological evidence in AD. Via network-based prediction and population-based validation, we then showed that three drugs (pioglitazone, febuxostat, and atenolol) are significantly associated with decreased risk of AD compared with matched control populations. Pioglitazone usage is significantly associated with decreased risk of AD (hazard ratio (HR) = 0.916, 95% confidence interval [CI] 0.861–0.974, P = 0.005) in a retrospective case-control validation. Pioglitazone is a peroxisome proliferator-activated receptor (PPAR) agonist used to treat type 2 diabetes, and propensity score matching cohort studies confirmed its association with reduced risk of AD in comparison to glipizide (HR = 0.921, 95% CI 0.862–0.984, P = 0.0159), an insulin secretagogue that is also used to treat type 2 diabetes. In vitro experiments showed that pioglitazone downregulated glycogen synthase kinase 3 beta (GSK3β) and cyclin-dependent kinase (CDK5) in human microglia cells, supporting a possible mechanism-of-action for its beneficial effect in AD. Conclusions: In summary, we present an integrated, network-based artificial intelligence methodology to rapidly translate GWAS findings and multi-omics data to genotype-informed therapeutic discovery in AD

    Distributed Estimation of Graph 4-Profiles

    Full text link
    We present a novel distributed algorithm for counting all four-node induced subgraphs in a big graph. These counts, called the 44-profile, describe a graph's connectivity properties and have found several uses ranging from bioinformatics to spam detection. We also study the more complicated problem of estimating the local 44-profiles centered at each vertex of the graph. The local 44-profile embeds every vertex in an 1111-dimensional space that characterizes the local geometry of its neighborhood: vertices that connect different clusters will have different local 44-profiles compared to those that are only part of one dense cluster. Our algorithm is a local, distributed message-passing scheme on the graph and computes all the local 44-profiles in parallel. We rely on two novel theoretical contributions: we show that local 44-profiles can be calculated using compressed two-hop information and also establish novel concentration results that show that graphs can be substantially sparsified and still retain good approximation quality for the global 44-profile. We empirically evaluate our algorithm using a distributed GraphLab implementation that we scaled up to 640640 cores. We show that our algorithm can compute global and local 44-profiles of graphs with millions of edges in a few minutes, significantly improving upon the previous state of the art.Comment: To appear in part at WWW'1

    Novel Deep Learning Models for Medical Imaging Analysis

    Get PDF
    abstract: Deep learning is a sub-field of machine learning in which models are developed to imitate the workings of the human brain in processing data and creating patterns for decision making. This dissertation is focused on developing deep learning models for medical imaging analysis of different modalities for different tasks including detection, segmentation and classification. Imaging modalities including digital mammography (DM), magnetic resonance imaging (MRI), positron emission tomography (PET) and computed tomography (CT) are studied in the dissertation for various medical applications. The first phase of the research is to develop a novel shallow-deep convolutional neural network (SD-CNN) model for improved breast cancer diagnosis. This model takes one type of medical image as input and synthesizes different modalities for additional feature sources; both original image and synthetic image are used for feature generation. This proposed architecture is validated in the application of breast cancer diagnosis and proved to be outperforming the competing models. Motivated by the success from the first phase, the second phase focuses on improving medical imaging synthesis performance with advanced deep learning architecture. A new architecture named deep residual inception encoder-decoder network (RIED-Net) is proposed. RIED-Net has the advantages of preserving pixel-level information and cross-modality feature transferring. The applicability of RIED-Net is validated in breast cancer diagnosis and Alzheimer’s disease (AD) staging. Recognizing medical imaging research often has multiples inter-related tasks, namely, detection, segmentation and classification, my third phase of the research is to develop a multi-task deep learning model. Specifically, a feature transfer enabled multi-task deep learning model (FT-MTL-Net) is proposed to transfer high-resolution features from segmentation task to low-resolution feature-based classification task. The application of FT-MTL-Net on breast cancer detection, segmentation and classification using DM images is studied. As a continuing effort on exploring the transfer learning in deep models for medical application, the last phase is to develop a deep learning model for both feature transfer and knowledge from pre-training age prediction task to new domain of Mild cognitive impairment (MCI) to AD conversion prediction task. It is validated in the application of predicting MCI patients’ conversion to AD with 3D MRI images.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201
    • …
    corecore