486 research outputs found

    Frequent itemset mining in big data with effective single scan algorithms

    Get PDF
    © 2013 IEEE. This paper considers frequent itemsets mining in transactional databases. It introduces a new accurate single scan approach for frequent itemset mining (SSFIM), a heuristic as an alternative approach (EA-SSFIM), as well as a parallel implementation on Hadoop clusters (MR-SSFIM). EA-SSFIM and MR-SSFIM target sparse and big databases, respectively. The proposed approach (in all its variants) requires only one scan to extract the candidate itemsets, and it has the advantage to generate a fixed number of candidate itemsets independently from the value of the minimum support. This accelerates the scan process compared with existing approaches while dealing with sparse and big databases. Numerical results show that SSFIM outperforms the state-of-the-art FIM approaches while dealing with medium and large databases. Moreover, EA-SSFIM provides similar performance as SSFIM while considerably reducing the runtime for large databases. The results also reveal the superiority of MR-SSFIM compared with the existing HPC-based solutions for FIM using sparse and big databases

    A Novel Nodesets-Based Frequent Itemset Mining Algorithm for Big Data using MapReduce

    Get PDF
    Due to the rapid growth of data from different sources in organizations, the traditional tools and techniques that cannot handle such huge data are known as big data which is in a scalable fashion. Similarly, many existing frequent itemset mining algorithms have good performance but scalability problems as they cannot exploit parallel processing power available locally or in cloud infrastructure. Since big data and cloud ecosystem overcomes the barriers or limitations in computing resources, it is a natural choice to use distributed programming paradigms such as Map Reduce. In this paper, we propose a novel algorithm known as A Nodesets-based Fast and Scalable Frequent Itemset Mining (FSFIM) to extract frequent itemsets from Big Data. Here, Pre-Order Coding (POC) tree is used to represent data and improve speed in processing. Nodeset is the underlying data structure that is efficient in discovering frequent itemsets. FSFIM is found to be faster and more scalable in mining frequent itemsets. When compared with its predecessors such as Node-lists and N-lists, the Nodesets save half of the memory as they need only either pre-order or post-order coding. Cloudera\u27s Distribution of Hadoop (CDH), a MapReduce framework, is used for empirical study. A prototype application is built to evaluate the performance of the FSFIM. Experimental results revealed that FSFIM outperforms existing algorithms such as Mahout PFP, Mlib PFP, and Big FIM. FSFIM is more scalable and found to be an ideal candidate for real-time applications that mine frequent itemsets from Big Data
    corecore