413 research outputs found

    Development of a Nanosatellite Software Defined Radio Communications System

    Get PDF
    Communications systems designed with application-specific integrated circuit (ASIC) technology suffer from one very significant disadvantage - the integrated circuits do not possess the ability of programmability. However, Software Defined Radio’s (SDR’s) integrated with Field Programmable Gate Arrays (FPGA) provide an opportunity to update the communication system on nanosatellites (which are physically difficult to access) due to their capability of performing signal processing in software. SDR signal processing is performed in software on reprogrammable elements such as FPGA’s. Applying this technique to nanosatellite communications systems will optimize the operations of the hardware, and increase the flexibility of the system. In this research a transceiver algorithm for a nanosatellite software defined radio communications is designed. The developed design is capable of modulation of data to transmit information and demodulation of data to receive information. The transceiver algorithm also works at different baud rates. The design implementation was successfully tested with FPGA-based hardware to demonstrate feasibility of the transceiver design with a hardware platform suitable for SDR implementation

    Design of Radio-Frequency Transceivers for Wireless Sensor Networks

    Get PDF

    ULTRA LOW POWER FSK RECEIVER AND RF ENERGY HARVESTER

    Get PDF
    This thesis focuses on low power receiver design and energy harvesting techniques as methods for intelligently managing energy usage and energy sources. The goal is to build an inexhaustibly powered communication system that can be widely applied, such as through wireless sensor networks (WSNs). Low power circuit design and smart power management are techniques that are often used to extend the lifetime of such mobile devices. Both methods are utilized here to optimize power usage and sources. RF energy is a promising ambient energy source that is widely available in urban areas and which we investigate in detail. A harvester circuit is modeled and analyzed in detail at low power input. Based on the circuit analysis, a design procedure is given for a narrowband energy harvester. The antenna and harvester co-design methodology improves RF to DC energy conversion efficiency. The strategy of co-design of the antenna and the harvester creates opportunities to optimize the system power conversion efficiency. Previous surveys have found that ambient RF energy is spread broadly over the frequency domain; however, here it is demonstrated that it is theoretically impossible to harvest RF energy over a wide frequency band if the ambient RF energy source(s) are weak, owing to the voltage requirements. It is found that most of the ambient RF energy lies in a series of narrow bands. Two different versions of harvesters have been designed, fabricated, and tested. The simulated and measured results demonstrate a dual-band energy harvester that obtains over 9% efficiency for two different bands (900MHz and 1800MHz) at an input power as low as -19dBm. The DC output voltage of this harvester is over 1V, which can be used to recharge the battery to form an inexhaustibly powered communication system. A new phase locked loop based receiver architecture is developed to avoid the significant conversion losses associated with OOK architectures. This also helps to minimize power consumption. A new low power mixer circuit has also been designed, and a detailed analysis is provided. Based on the mixer, a low power phase locked loop (PLL) based receiver has been designed, fabricated and measured. A power management circuit and a low power transceiver system have also been co-designed to provide a system on chip solution. The low power voltage regulator is designed to handle a variety of battery voltage, environmental temperature, and load conditions. The whole system can work with a battery and an application specific integrated circuit (ASIC) as a sensor node of a WSN network

    UHF-sagedusala sidesüsteem kuupsatelliidile

    Get PDF
    Communication is one of the most important parts of any satellite. Estonian future satellite ESTCube-2 needs a new and advanced communication system to upload commands and firmware and download telemetry and images. The goal of this masters thesis was to determine system architecture and develop first electrical prototype of this communication system. Strengths and weaknesses of previous systems was researched and new system design was determined. Necessary single components were determined. Single components were built to prototypes, tested and characterised. RF parameters of filters were measured and found to be suitable for the system. Components were integrated to a first electrical model of the communication system. All of the work meets the requirements set to the system. Since power is very limited on small satellites focus was making the communication system energy efficient. This work could not be done without support from people in ESTCube team. Most of the necessary knowledge was taught by supervisors. Much of supporting work was done by other members of communication subsystem team – Ahti Laurisson, Taavi Adamson and Laur Joost. Work on the system continues in to develop full software and test all the component integration. This work contains technical drawings and description of developed system. It also provides information for developing other similar systems

    Récepteur Sans-Fil à Basse Consommation et à Modulation Mixte FSK-ASK pour les Dispositifs Médicaux

    Get PDF
    RÉSUMÉ Les émetteurs-récepteurs radiofréquences (RF) offrent le lien de communications le plus commun afin de mettre au point des dispositifs médicaux implantables dédiés aux interfaces homme-machines. La surveillance en continu des paramètres biologiques des patients nécessite un module de communication sans-fil capable de garantir un échange de données rapide, en temps réel, à faible puissance tout en étant implémenté dans un espace physique réduit. La consommation de puissance des dispositifs implantables joue un rôle important dans les durées de vie des batteries qui nécessitent une chirurgie pour leur remplacement, à moins qu’une technique de transfert de puissance sans-fil soit utilisée pour recharger la batterie ou alimenter l’implant a travers les tissus humains. Dans ce projet, nous avons conçu, implémenté et testé un récepteur RF à faible puissance et haut-débit de données opérant entre 902 et 928 MHz qui est la bande industrielle-scientifiquemédicale (Industrial, Scientific and Medical) d’Amérique du Nord. Ce récepteur fait partie d’un système de communication bidirectionnel dédié à l’interface sans-fil des dispositifs électroniques implantables et bénéficie d’une nouvelle technique de conversion de modulation par déplacement de fréquence (FSK) en Modulation par déplacement d’amplitude (ASK). Toutes les phases de conception et d’implémentation de la topologie adoptée pour les récepteurs RF sont survolées et discutées dans cette thèse. Les différents étages de circuits sont conçus selon une étude analytique fondée de la modulation FSK et ASK utilisées, ce qui permettra une amélioration des performances notamment le débit de transmission des données et la consommation de puissance. Tous les circuits sont réalisés de façon à ce que la consommation totale et la surface de silicium à réserver soient le minimum possible. Un oscillateur avec verrouillage par injection (Injection-Looked Oscillator - ILO) de faible puissance est réalisé pour assurer la conversion des signaux ASK en FSK. Une combinaison des avantages des deux architectures de modulation d’amplitude et de fréquence, pour les circuits d’émetteurrécepteur sans fil, a été réalisé avec le système proposé. Un module incluant un récepteur de réveil (Wake up) est ajouté afin d’optimiser la consommation totale du circuit en mettant tous les blocs à l’arrêt. Nous avons réalisé un récepteur de réveil RF compact et à faible coût, permettant de très faible niveaux de consommation d’énergie, une bonne sensibilité et une meilleure tolérance aux interférences. Le design est basé sur une topologie homodyne à détection d’enveloppe permettant une transposition directe du signal RF modulé en amplitude en un signal en bande de base. Cette architecture nécessite une architecture peu encombrante à intégrer qui élimine le problème des fréquences image pour la même topologie avec une modulation de fréquence.---------- ABSTRACT ISM band transceiver using a wake-up bloc for wireless body area networks (WBANs) wearable and implantable medical devices is proposed. The system achieves exceptionally low-power consumption and allows a high-data rate by combining the advantages of Frequency-Shift-Keying (FSK) and Amplitude-Shift- Keying (ASK) modulation techniques. The transceiver employs FSK modulation at a data rate of 8 Mbit/s to establish RF link among the medical device and a control unit. Transmitter (Tx) includes a new efficient FSK modulation scheme which offer up to 20 Mb/s of data-rate and dissipates around 0.084 nJ/b. The design of the proposed oscillator achieves variable frequency from 300 kHz to 8 MHz by adjusting the transistors geometry, the on-chip control signal and the tuning capacitors. In the transmitter path, the high-quality LOs Inand Quadrature-phase (I and Q) outputs are produced using a very low-power fully integrated integer-N frequency synthesizer. The architecture of the receiver is inspired from the super-regenerative receiver (SRR) topology which can be used to design a transceiver that is suitable for ASK modulation. In fact, this architecture is based mainly on envelope detection scheme which remove the need to process the carrier phase to reduce the complexity of integrated design. It has been shown too, that the envelope detection scheme is more robust to phase noise than the coherent scheme. The integrated receiver uses on a new FSK-to-ASK conversion technique. The conversion feature that we adopt in the main receiver design is based on the fact that the incident frequency of converter could be differentiated by the amplitude of output signal, which conducts to the frequency-to-amplitude conversion. Thanks to the injection locking oscillator (ILO). the new design of converter is located between the LNA as first part and the envelope detector as second part to benefit from the injection-locking isolation. On-Off-keying (OOK) fully passive wake-up circuit (WuRx) with energy harvesting from Radio Frequency (RF) link is used to optimize the power issipation of the RF transceiver in order to meet the low power requirement. The WuRx operates at the ISM 902–928 MHz. A high efficiency differential rectifier behaves as voltage multiplier. It generates the envelope of the input signal and provides the supply voltage for the rest of blocks including a low-power comparator and reference generators

    An Ultralow Power Multirate FSK Demodulator With Digital-Assisted Calibrated Delay-Line Based Phase Shifter for High-Speed Biomedical Zero-IF Receivers

    Get PDF
    [[abstract]]頻率鍵移接收解調電路可廣泛應用於穿戴式或植入式生理訊號感測器與各種環境監測之成測器上,其其有超低功率消耗與抗干擾能力強之優點,因此可大幅增加成測器之使用壽命並提供可靠與穩定之資料傳輸品質。本論文提出一高速、可變傳輸速率與超低功耗之頻率鍵移接收解調電路設計。突破先前頻率鍵移解調電路最高解調速度為10 Mb/s 之限制,傳輸速率可達40 Mb/s 以上,因此可大幅降低接收每位元資料所需之能源消耗,提高能源效率。此電路架構可根據使用需求調整其傳輸速率範園1 Mb/s-40 Mb/s,以達到功耗與傳輸速率最佳化之目的。[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]紙

    A Sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing Applications

    Get PDF
    This paper presents the design of a narrowband transmitter and antenna system that achieves an average power consumption of 78 pW when operating at a duty-cycled data rate of 1 bps. Fabricated in a 0.18 μm CMOS process, the transmitter employs a direct-RF power oscillator topology where a loop antenna acts as a both a radiative and resonant element. The low-complexity single-stage architecture, in combination with aggressive power gating techniques and sizing optimizations, limited the standby power of the transmitter to only 39.7 pW at 0.8 V. Supporting both OOK and FSK modulations at 2.4 GHz, the transmitter consumed as low as 38 pJ/bit at an active-mode data rate of 5 Mbps. The loop antenna and integrated diodes were also used as part of a wireless power transfer receiver in order to kick-start the system power supply prior to energy harvesting operation.Semiconductor Research Corporation. Interconnect Focus CenterSemiconductor Research Corporation. C2S2 Focus CenterNational Institutes of Health (U.S.) (Grant K08 DC010419)National Institutes of Health (U.S.) (Grant T32 DC00038)Bertarelli Foundatio
    corecore