207 research outputs found

    Microwave Signal Processing over Multicore Fiber

    Full text link
    [EN] We review the introduction of the space dimension into fiber-based technologies to implement compact and versatile signal processing solutions for microwave and millimeter wave signals. Built upon multicore fiber links and devices, this approach allows the realization of fiber-distributed signal processing in the context of fiber-wireless communications, providing both radiofrequency access distribution and signal processing in the same fiber medium. We present different space-division multiplexing architectures to implement tunable true time delay lines that can be applied to a variety of microwave photonics functionalities, such as signal filtering, radio beamsteering in phased array antennas or optoelectronic oscillation. In particular, this paper gathers our latest work on the following multicore fiber technologies: dispersion-engineered heterogeneous multicore fiber links for distributed tunable true time delay line operation; multicavity devices built upon the selective inscription of gratings in homogenous multicore fibers for compact true time delay line operation; and multicavity optoelectronic oscillation over both homogeneous and heterogeneous multicore fibers.This research was supported by the ERC Consolidator Grant 724663; the Spanish Projects TEC2015-62520-ERC, TEC2014-60378-C2-1-R and TEC2016-80150-R; the Valencian Research Excellency Award Program GVA PROMETEO 2013/012; the Spanish MECD FPU Scholarship (FPU13/04675) for J. Hervás; the Spanish scholarships MINECO BES-2015-073359 for S. García; and the Spanish MINECO Ramon y Cajal program RYC-2014-16247 for I. Gasulla.García Cortijo, S.; Barrera Vilar, D.; Hervás-Peralta, J.; Sales Maicas, S.; Gasulla Mestre, I. (2017). Microwave Signal Processing over Multicore Fiber. Photonics. 4(49):1-14. https://doi.org/10.3390/photonics404004911444

    Semiconductor laser dynamics induced by optical feedback for photonic microwave sensing

    Get PDF
    As one of the most widely used light sources today, semiconductor lasers (SLs) are an important part of many optical systems, especially for sensing, communications, metrology, and storage applications. SLs have the advantages of small size, easy integration, and miniaturization. The massification of electronic devices has furthered this agenda, allowing the creation of portable systems capable of supporting optical sensing systems. Essentially, SLs are inherently nonlinear devices, in nonlinear systems, the folding and stretching behaviors of variables result in di↵erent dynamical routes. It is worth noting that under the conditions of a stable operation, an SL biased by constant current usually emits laser light with a constant intensity. However, with the introduction of external optical feedback (OF), the laser light can become unstable. SL will undergo from steady state, switching status, to period-one (P1) oscillation by crossing Hopf-bifurcation. In the P1 state, the system produces a modulation of the laser optical output power for the generation of microwave photonics (MWP) signals. In this thesis, we operate SL with OF scheme in P1 dynamics, and found that the proposed system has the great capability to achieve both displacement and absolute distance sensing applications with high resolution and wide measurement range, by using time-frequency information, relaxation oscillation information, and nonlinear dynamic characteristics carried in that SLs emit signals. The contributions of each chapter in this thesis are described in the following: In Chapter 3, we propose an SL with OF set at the P1 dynamics to generate the MWP signal for displacement sensing. Di↵erent from the traditional MWP generation method, the designed laser nonlinear dynamics are used by slightly perturbing the SL source with the help of external feedback light to make the system work in the P1 dynamic state, thereby generating regular microwave oscillation. By using the fourth-order Runge-Kutta method to numerically solve the famous Lang-Kobayashi differential equation, the boundary of di↵erent laser dynamic states is delimited, so that the system can generate stable and sustainable MWP signals in P1 dynamics. A set of parameter selection rules for designing an SL based MWP displacement sensing system is obtained. In addition, a measurement algorithm for recovering the displacement from an MWP sensing signal is developed. By making full use of the sensing information carried in both amplitude and frequency of the MWP signal, displacement sensing with high resolution and high sensitivity can be achieved. Both simulations and experiments are conducted to verify the proposed method and show it is capable of realizing high measurement sensitivity, and high resolution for displacement sensing. In Chapter 4, utilizing the rich nonlinear dynamics of an SL with OF, under the proper controllable system parameters, the system enters the P1 dynamics through Hopf-bifurcation. In the P1 state, the detailed relationship between the relaxation oscillation frequency of MWP signals and external cavity length is studied through solving the Lang-Kobayashi delayed di↵erential equations. The displacement measurement formula is thus obtained. In addition, the relevant signal processing algorithm is developed by considering mode-hopping, frequency-hopping, and sawtooth-like phenomena that occurred in the relaxation oscillation. The displacement measurement can be enhanced in a wider sensing range by fully using the relaxation oscillation frequency relationship. Verification results in simulation and experiment show that the proposed MWP displacement sensing system based on SL with OF contributes to designing a prototype of a compact displacement sensor with wide measurement range and high resolution. In Chapter 5, OF induced switching status between two nonlinear dynamic states (stable and P1 states) is observed in the SL with OF system. Without the need for any electronic or optical modulation devices, the laser intensity can be modulated in a square wave form due to the switching via utilizing the inherent SL dynamics near Hopf-bifurcation boundary. The periodicity in the switching enables us to develop a new approach for long-distance sensing compared to other SL with OF based absolute distance measurement systems and lift the relevant restrictions that existed in the systems. Moreover, the impact of system controllable parameters on the duty cycle of the square wave signals generated was investigated as well, aiming to maintain the proposed system robustly operating at the switching status

    Low Noise, Narrow Optical Linewidth Semiconductor-based Optical Comb Source And Low Noise Rf Signal Generation

    Get PDF
    Recently optical frequency combs and low noise RF tones are drawing increased attention due to applications in spectroscopy, metrology, arbitrary waveform generation, optical signal processing etc. This thesis focuses on the generation of low noise RF tones and stabilized optical frequency combs. The optical frequency combs are generated by a semiconductor based external cavity mode-locked laser with a high finesse intracavity etalon. In order to get the lowest noise and broadest bandwidth from the mode-locked laser, it is critical to know the free spectral range (FSR) of the etalon precisely. First the etalon FSR is measured by using the modified Pound-Drever-Hall (PDH) based method and obtained a resolution of 1 part in 106 , which is 2 order of magnitude better than the standard PDH based method. After optimizing the cavity length, RF driving frequency and PDH cavity locking point, the mode-locked laser had an integrated timing jitter of 3 fs (1 Hz- 100 MHz) which is, to the best of our knowledge, the lowest jitter ever reported from a semiconductor based multigigahertz comb source. The modelocked laser produces ~ 100 comb lines with 10 GHz spacing, a linewidth of ~500 Hz and 75 dB optical signal-to-noise ratio. The same system can also be driven as a regeneratively modelocked laser with greatly improved noise performance. Another way of generating a low noise RF tone is using an opto-electronic oscillator which uses an optical cavity as a high Q element. Due to the harmonic nature of OEOs, a mode selection element is necessary. Standard OEOs use an RF filter having drawbacks such as broad pass band, high loss, and high thermal noise. In our work, a novel optoelectronic scheme which uses an optical filter (Fabry-Perot etalon) as the mode filter instead of an RF filter is demonstrated. This method has the advantage of having ultra-narrow filtering bandwidths ( ~ 10 iv kHz for a 10 GHz FSR and 106 finesse) and an extremely low noise RF signal. Experimental demonstration of the proposed method resulted in a 5-10 dB decrease of the OEO noise compared to the conventional OEO setup. Also, by modifying the etalon-based OEO, and using single side band modulation, an optically tunable optoelectronic oscillator is achieved with 10-20 dB lower noise than dual side band modulation. Noise properties of the OEO as a function of optical frequency detuning is also analyzed theoretically and the results are in agreement with experimental results. The thesis concludes with comments on future work and directions

    20 GHz instantaneous bandwidth RF spectrum analyzer with high time-resolution

    Get PDF
    International audienceWe report on the experimental demonstration of a multi-gigahertz bandwidth RF spectrum analyzer exhibiting a resolution below 20 MHz, based on spectral hole burning in a rare-earth ion-doped crystal. To be compatible with demanding real-time spectrum monitoring applications, our demonstrator is designed to reach a high time resolution. For this purpose, we implemented the so-called "rainbow" architecture in which the spectral components of the incoming signal are angularly separated by the crystal, and are then acquired with a pixelated photodetector. The Tm 3+ :YAG crystal is programmed with a semiconductor DFB laser which frequency scan is servo-controlled and synchronized with the angular scan of a resonant galvanometric mirror, while a high-speed camera is used to acquire the spectra. In the perspective of future implementation within a system, the crystal is cooled below 4 K with a closed-cycle cryostat. With this setup, we have been able to monitor and record the spectrum of complex microwave signals over an instantaneous bandwidth above 20 GHz, with a time resolution below 100 µs, 400 resolvable frequency components and a probability of intercept of 100 %
    • …
    corecore