8 research outputs found

    Frequency-Hopped Multiple-Access Communications With Noncoherent M-ary OFDM-ASK

    Get PDF
    A noncoherent, bandwidth-efficient modulation scheme is proposed for frequency-hopping multiple-access (FH-MA) networks. The proposed scheme is a combination of noncoherent M-ary amplitude-shift keying (NMASK) and orthogonal frequency-division multiplexing (OFDM). Using this scheme minimizes the required data bandwidth. The number of frequency slots available to the users increases significantly for a fixed spread-spectrum bandwidth (BWSS). The effect of the multiple-access interference is reduced. Simple and accurate bit error rate expressions have been derived for FH-OFDM-MASK in additive white Gaussian noise channels and for FH-OFDM-ASK in Rayleigh fading channels

    Multiuser non coherent massive MIMO schemes based on DPSK for future communication systems

    Get PDF
    The explosive usage of rich multimedia content in wireless devices has overloaded the communication networks. Moreover, the fifth generation (5G) of wireless communications involves new requirements in the radio access network (RAN) which require higher network capacities and new capabilities such as ultra-reliable and low-latency communication (URLLC), vehicular communications or augmented reality. All this has encouraged a remarkable spectrum crisis in the RF bands. A need for searching alternative techniques with more spectral efficiency to accommodate the needs of future emerging wireless communications is emerging. In this context, massive MIMO (m-MIMO) systems have been proposed as a promising solution for providing a substantial increase in the network capacity, becoming one of the key enabling technologies for 5G and beyond. m-MIMO provides high spectral- and energy-efficiency thanks to the deployment of a large number of antennas at the BS. However, we have to take into account that the current communication technologies are based on coherent transmission techniques so far, which require the transmission of a huge amount of signaling. This drawback is escalating with the excessive available number of antennas in m-MIMO. Therefore, the differential encoding and non coherent (NC) detection are an alternative solution to circumvent the drawbacks of m-MIMO in coherent systems. This Ph.D. Thesis is focused on signal processing techniques for NC detection in conjunction with m-MIMO, proposing new constellation designs and NC detection algorithms, where the information is transmitted in the signal differential phase. First, we design new constellation schemes for an uplink multiuser NC m-MIMO system in Rayleigh fading channels. These designs allow us to separate the users' signals at the receiver thanks to a one-to-one correspondence between the constellation for each user and the received joint constellation. Two approaches are considered in terms of BER: each user achieves a different performance and, on the other hand, the same performance is provided for all users. We analyze the number of antennas needed for those designs and compare to the required number by other designs in the literature. It is shown that our designs based on DPSK require a lower number of antennas than that required by their counterpart schemes based on energy. In addition, we compare the performance to their coherent counterpart systems, resulting NC-m-MIMO based on DPSK capable of outperforming the coherent systems with the suitable designs. Second, in order to reduce the number of antennas required for a target performance we propose a multi-user bit interleaved coded modulation - iterative decoding (BICM-ID) scheme as channel coding for a NC-m-MIMO system based on DPSK. We propose a novel NC approach for calculating EXIT curves based on the number of antennas. Then using the EXIT chart we find the best channel coding scheme for our NC-m-MIMO proposal. We show that the number of users served by the BS can be increased with a 70% reduction in the number of antennas with respect to the case without channel coding. In particular, we show that with 100 antennas for error protection equal design for all users and a coding rate of 1/2 we achieve the minimum probability of error. Third, we consider that current scenarios such as backhaul wireless systems, rural or suburban environments, and even new device-to-device (D2D) communications or the communications in higher frequencies (millimeter and the emerging ones in terahertz frequencies) can have a predominant line-of-sight (LOS) component, modeled by Rician fading. For all these new possible scenarios in 5G, we analyze the behavior of the NC m-MIMO systems when we have a Rician fading. We present a new constellation design to overcome the problem of the LOS channel component, as well as an associated detection algorithm to separate each user in reception taking into account the characterization of the constellation. In addition, for contemplating a more realistic scenario, we propose grouping users which experience a Rayleigh fading with those with Rician fading, analyzing the SINR and the performance of such combination in a multi-user NC m-MIMO system based on M-DPSK. The adequate user grouping allows unifying the constellation for both groups of users and the detection algorithm, reducing the complexity of the receiver. Also, the number of users that may be multiplexed may be further increased thanks to the improved performance. In the fourth part of this Thesis, we analyse the performance of multi-user NC m- MIMO based on DPSK in real environments and practical channels defined for the current standards such as LTE, the future technologies such as 5G and even for communications in the terahertz band. For this purpose, we use a metric to model the time-varying characteristics of the practical channels. We employ again the EXIT charts tool for analyzing and designing iteratively decoded systems. This analysis allows us to obtain an estimate of the degradation of the system's performance imposed by realistic channels. Hence, we show that our proposed system is robust to temporal variations, thus it is more recommendable the employment of NC-m-MIMO-DPSK in the future communication standards such as 5G. In order to reduce he number of hardware resources required in terms of RF chains, facilitating its implementation in a real system, we propose incorporating differential spatial modulation (DSM). We present and analyze a novel multiuser scheme for NC-m-MIMO combined with DSM with which we can see that the number of antennas is not a affected by the incorporation of DSM, even we have an improvement on the performance with respect to the coherent case. Finally, we study the viability of multiplexing users by constellation schemes against classical multiplexing techniques such as time division multiple access (TDMA). In order to fully characterize the system performance we analyze the block error rate (BLER) and the throughput of a NC-m-MIMO system. The results show a significant advantage regarding the number of antennas for multiplexing in the constellation against TDMA. However, in some cases, the demodulation of multiple users in constellation could require an excessively large number of antennas compared to TDMA. Therefore, it is necessary to properly manage the tradeoff between throughout and the number of antennas, to reach an optimal operational point, as shown in this Thesis.El inmenso uso de contenido multimedia en los dispositivos inalámbricos ha sobrecargado las redes de comunicaciones. Además, la quinta generación (5G) de sistemas de comunicaciones demanda nuevos requisitos para la red de acceso radio, la cual requiere ofrecer capacidades de red mayores y nuevas funcionalidades como comunicaciones ultra fiables y con muy poca letancia (URLLC), comunicaciones vehiculares o aplicaciones como la realidad aumentada. Todo esto ha propiciado una crisis notable en el espectro electromagnético, lo que ha llevado a una necesidad por buscar técnicas alternativas con más eficiencia espectral para acomodar todos los requisitos de las tecnologías de comunicaciones emergentes y futuras. En este contexto, los sistemas multi antena masivos, conocidos como massive MIMO, m-MIMO, han sido propuestos como una solución prometedora que proporciona un incremento substancial de la capacidad de red, convirtiéndose en una de las tecnologías claves para el 5G. Los sistemas m-MIMO elevan enormemente el número de antenas en la estación base, lo que les permite ofrecer alta eficiencia espectral y energética. No obstante, tenemos que tener en cuenta que las actuales tecnologías de comunicaciones emplean técnicas coherentes, las cuales requieren de información del estado del canal y por ello la transmisión de una enorme cantidad de información de señalización. Este inconveniente se ve agravado en el caso del m-MIMO debido al enorme número de antenas. Por ello, la codificación diferencial y la detección no coherente (NC) son una solución alternativa para solventar el problema de m-MIMO en los sistemas coherentes. Esta Tesis se centra en las técnicas de procesado de señal para detección NC junto con m-MIMO, proponiendo nuevos esquemas de constelación y algoritmos de detección NC, donde la información sea transmitida en la diferencia de fase de la señal. Primero, diseñamos nuevas constelaciones para un sistema multi usuario NC en m- MIMO en enlace ascendente (uplink) en canales con desvanecimiento tipo Rayleigh. Estos diseños nos permiten separar las señales de los usuarios en el receptor gracias a la correspondencia unívoca entre la constelación de cada usuario individual y la constelación conjunta recibida en la estación base. Hemos considerado dos enfoques para el diseño en términos de probabilidad de error: cada usuario consigue un rendimiento distinto, mientras que por otro lado, todos los usuarios son capaces de recibir las mismas prestaciones de probabilidad de error. Analizamos el número de antenas necesario para estos diseños y comparamos con el número requerido por otros diseños propuestos en la literatura. Nuestro diseño basado en DPSK requiere un número menor de antenas comparado con los sistemas basados en detección de energía. También comparamos con su homólogo coherente, resultando que NC-m-MIMO basado en DPSK es capaz de superar a los sistemas coherentes con los diseños adecuados. En segundo lugar, para reducir el número de antenas requerido para un rendimiento dado, proponemos incluir un esquema de codificación de canal. Hemos optado por un esquema de modulación codificado por bit entrelazado y decodificación iterativa (BICMID). Hemos empleado la herramienta EXIT chart para el diseño de la codificación de canal, proponiendo un nuevo enfoque para calcular las curvas EXIT de forma NC y basadas en el número de antenas. Los resultados muestran que el número de usuarios servidos por la estación base puede ser incrementado reduciendo un 70% el número de antenas con respecto al caso sin codificación de canal. En particular, para un array de 100 antenas y un diseño que ofrezca iguales prestaciones a todos los usuarios, con un código de tasa 1=2, podemos conseguir la mínima probabilidad de error. En tercer lugar, consideramos escenarios donde el canal tenga una componente predominante de visión directa (LOS) con la estación base modelada mediante un desvanecimiento tipo Rician. Por ejemplo, sistemas inalámbricos de backhaul, entornos rurales o sub urbanos, comunicaciones entre dispositivos (D2D), también cuando nos movemos hacia frecuencias superiores como son en la banda de milimétricas o más recientemente, la banda de terahercios para buscar mayores anchos de banda. Todos estos escenarios están contemplados en el futuro 5G. Los diseños presentados para canales Rayleigh ya no son válidos debido a la componente LOS del canal, por ello presentamos un nuevo diseño de constelación que resuelve el problema de la componente LOS, así como una guía para diseñar nuevas constelaciones. También proponemos un algoritmo asociado al diseñno de la constelación para poder separar a los usuarios en recepción. Además, para contemplar un escenario más realista donde podamos encontrar tanto desvanecimiento Rayleigh como Rice, proponemos agrupar usuarios de ambos grupos, analizando su rendimiento y relación señal a interferencia en la combinación. El adecuado agrupamiento permite unificar el diseño de la constelación para ambos desvanecimientos y por tanto reducir la complejidad en el receptor. También, el número de usuarios multiplicados en la constelación podría ser incrementado, gracias a la mejora en el rendimiento. El cuarto módulo de esta tesis es dedicado a analizar el rendimiento de los diseños propuestos en presencia de canales reales, donde disponemos de variabilidad temporal y en frecuencia. Proponemos usar una métrica que modela las características de la variabilidad temporal y, usando de nuevo la herramienta EXIT, analizamos los sistemas decodificados iterativamente considerando ahora los parámetros prácticos del canal. Este análisis nos permite obtener una estimación de la degradación que sufre el rendimiento del sistema impuesto por canales reales. Los resultados muestran que los sistemas NC-m-MIMO basados en DPSK son muy robustos a la variabilidad temporal por lo que son recomendables para los nuevos escenarios propuestos por el 5G, donde el canal cambia rápidamente. Otra consideración para introducir los sistemas NC con m-MIMO es la problemática de necesitar muchas cadenas de radio frecuencia que llevarían a tamaños de dispositivos enormes. Para reducir este número se propone la modulación espacial. En esta Tesis, estudiamos su uso con los sistemas NC, proponiendo una solución de modulación espacial diferencial para esquemas con múltiples usuarios combinado con NC-m-MIMO. Finalmente, estudiamos la viabilidad de multiplexar usuarios en la constelación frente a usar técnicas clásicas de multiplexación como TDMA. Para caracterizar completamente el rendimiento del sistema, analizamos la tasa de error de bloque (BLER) y el throughput de un sistema NC-m-MIMO. Los resultados muestran una ventaja significativa en cuanto al número de antennas para multiplexar usuarios en la constelación frente al requerido por TDMA. No obstante, en algunos casos, la demodulación de múltiples usuarios en la constelación podría requerir un número de antennas excesivamente grande comparado con la multiplexación en el tiempo. Por ello, es necesario gestionar adecuadamente un balance entre el throughput y el número de antenas para alcanzar un punto operacional óptimo, como se muestra en esta Tesis.Programa Oficial de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Ana Isabel Pérez Neira.- Secretario: Máximo Morales Céspedes.- Vocal: María del Carmen Aguayo Torre

    Ultra Wideband Communications: from Analog to Digital

    Get PDF
    Ultrabreitband-Signale (Ultra Wideband [UWB]) können einen signifikanten Nutzen im Bereich drahtloser Kommunikationssysteme haben. Es sind jedoch noch einige Probleme offen, die durch Systemdesigner und Wissenschaftler gelöst werden müssen. Ein Funknetzsystem mit einer derart großen Bandbreite ist normalerweise auch durch eine große Anzahl an Mehrwegekomponenten mit jeweils verschiedenen Pfadamplituden gekennzeichnet. Daher ist es schwierig, die zeitlich verteilte Energie effektiv zu erfassen. Außerdem ist in vielen Fällen der naheliegende Ansatz, ein kohärenter Empfänger im Sinne eines signalangepassten Filters oder eines Korrelators, nicht unbedingt die beste Wahl. In der vorliegenden Arbeit wird dabei auf die bestehende Problematik und weitere Lösungsmöglichkeiten eingegangen. Im ersten Abschnitt geht es um „Impulse Radio UWB”-Systeme mit niedriger Datenrate. Bei diesen Systemen kommt ein inkohärenter Empfänger zum Einsatz. Inkohärente Signaldetektion stellt insofern einen vielversprechenden Ansatz dar, als das damit aufwandsgünstige und robuste Implementierungen möglich sind. Dies trifft vor allem in Anwendungsfällen wie den von drahtlosen Sensornetzen zu, wo preiswerte Geräte mit langer Batterielaufzeit nötigsind. Dies verringert den für die Kanalschätzung und die Synchronisation nötigen Aufwand, was jedoch auf Kosten der Leistungseffizienz geht und eine erhöhte Störempfindlichkeit gegenüber Interferenz (z.B. Interferenz durch mehrere Nutzer oder schmalbandige Interferenz) zur Folge hat. Um die Bitfehlerrate der oben genannten Verfahren zu bestimmen, wurde zunächst ein inkohärenter Combining-Verlust spezifiziert, welcher auftritt im Gegensatz zu kohärenter Detektion mit Maximum Ratio Multipath Combining. Dieser Verlust hängt von dem Produkt aus der Länge des Integrationsfensters und der Signalbandbreite ab. Um den Verlust durch inkohärentes Combining zu reduzieren und somit die Leistungseffizienz des Empfängers zu steigern, werden verbesserte Combining-Methoden für Mehrwegeempfang vorgeschlagen. Ein analoger Empfänger, bei dem der Hauptteil des Mehrwege-Combinings durch einen „Integrate and Dump”-Filter implementiert ist, wird für UWB-Systeme mit Zeit-Hopping gezeigt. Dabei wurde die Einsatzmöglichkeit von dünn besetzten Codes in solchen System diskutiert und bewertet. Des Weiteren wird eine Regel für die Code-Auswahl vorgestellt, welche die Stabilität des Systems gegen Mehrnutzer-Störungen sicherstellt und gleichzeitig den Verlust durch inkohärentes Combining verringert. Danach liegt der Fokus auf digitalen Lösungen bei inkohärenter Demodulation. Im Vergleich zum Analogempfänger besitzt ein Digitalempfänger einen Analog-Digital-Wandler im Zeitbereich gefolgt von einem digitalen Optimalfilter. Der digitale Optimalfilter dekodiert den Mehrfachzugriffscode kohärent und beschränkt das inkohärente Combining auf die empfangenen Mehrwegekomponenten im Digitalbereich. Es kommt ein schneller Analog-Digital-Wandler mit geringer Auflösung zum Einsatz, um einen vertretbaren Energieverbrauch zu gewährleisten. Diese Digitaltechnik macht den Einsatz langer Analogverzögerungen bei differentieller Demodulation unnötig und ermöglicht viele Arten der digitalen Signalverarbeitung. Im Vergleich zur Analogtechnik reduziert sie nicht nur den inkohärenten Combining-Verlust, sonder zeigt auch eine stärkere Resistenz gegenüber Störungen. Dabei werden die Auswirkungen der Auflösung und der Abtastrate der Analog-Digital-Umsetzung analysiert. Die Resultate zeigen, dass die verminderte Effizienz solcher Analog-Digital-Wandler gering ausfällt. Weiterhin zeigt sich, dass im Falle starker Mehrnutzerinterferenz sogar eine Verbesserung der Ergebnisse zu beobachten ist. Die vorgeschlagenen Design-Regeln spezifizieren die Anwendung der Analog-Digital-Wandler und die Auswahl der Systemparameter in Abhängigkeit der verwendeten Mehrfachzugriffscodes und der Modulationsart. Wir zeigen, wie unter Anwendung erweiterter Modulationsverfahren die Leistungseffizienz verbessert werden kann und schlagen ein Verfahren zur Unterdrückung schmalbandiger Störer vor, welches auf Soft Limiting aufbaut. Durch die Untersuchungen und Ergebnissen zeigt sich, dass inkohärente Empfänger in UWB-Kommunikationssystemen mit niedriger Datenrate ein großes Potential aufweisen. Außerdem wird die Auswahl der benutzbaren Bandbreite untersucht, um einen Kompromiss zwischen inkohärentem Combining-Verlust und Stabilität gegenüber langsamen Schwund zu erreichen. Dadurch wurde ein neues Konzept für UWB-Systeme erarbeitet: wahlweise kohärente oder inkohärente Empfänger, welche als UWB-Systeme Frequenz-Hopping nutzen. Der wesentliche Vorteil hiervon liegt darin, dass die Bandbreite im Basisband sich deutlich verringert. Mithin ermöglicht dies einfach zu realisierende digitale Signalverarbeitungstechnik mit kostengünstigen Analog-Digital-Wandlern. Dies stellt eine neue Epoche in der Forschung im Bereich drahtloser Sensorfunknetze dar. Der Schwerpunkt des zweiten Abschnitts stellt adaptiven Signalverarbeitung für hohe Datenraten mit „Direct Sequence”-UWB-Systemen in den Vordergrund. In solchen Systemen entstehen, wegen der großen Anzahl der empfangenen Mehrwegekomponenten, starke Inter- bzw. Intrasymbolinterferenzen. Außerdem kann die Funktionalität des Systems durch Mehrnutzerinterferenz und Schmalbandstörungen deutlich beeinflusst werden. Um sie zu eliminieren, wird die „Widely Linear”-Rangreduzierung benutzt. Dabei verbessert die Rangreduzierungsmethode das Konvergenzverhalten, besonders wenn der gegebene Vektor eine sehr große Anzahl an Abtastwerten beinhaltet (in Folge hoher einer Abtastrate). Zusätzlich kann das System durch die Anwendung der R-linearen Verarbeitung die Statistik zweiter Ordnung des nicht-zirkularen Signals vollständig ausnutzen, was sich in verbesserten Schätzergebnissen widerspiegelt. Allgemeine kann die Methode der „Widely Linear”-Rangreduzierung auch in andern Bereichen angewendet werden, z.B. in „Direct Sequence”-Codemultiplexverfahren (DS-CDMA), im MIMO-Bereich, im Global System for Mobile Communications (GSM) und beim Beamforming.The aim of this thesis is to investigate key issues encountered in the design of transmission schemes and receiving techniques for Ultra Wideband (UWB) communication systems. Based on different data rate applications, this work is divided into two parts, where energy efficient and robust physical layer solutions are proposed, respectively. Due to a huge bandwidth of UWB signals, a considerable amount of multipath arrivals with various path gains is resolvable at the receiver. For low data rate impulse radio UWB systems, suboptimal non-coherent detection is a simple way to effectively capture the multipath energy. Feasible techniques that increase the power efficiency and the interference robustness of non-coherent detection need to be investigated. For high data rate direct sequence UWB systems, a large number of multipath arrivals results in severe inter-/intra-symbol interference. Additionally, the system performance may also be deteriorated by multi-user interference and narrowband interference. It is necessary to develop advanced signal processing techniques at the receiver to suppress these interferences. Part I of this thesis deals with the co-design of signaling schemes and receiver architectures in low data rate impulse radio UWB systems based on non-coherent detection.● We analyze the bit error rate performance of non-coherent detection and characterize a non-coherent combining loss, i.e., a performance penalty with respect to coherent detection with maximum ratio multipath combining. The thorough analysis of this loss is very helpful for the design of transmission schemes and receive techniques innon-coherent UWB communication systems.● We propose to use optical orthogonal codes in a time hopping impulse radio UWB system based on an analog non-coherent receiver. The “analog” means that the major part of the multipath combining is implemented by an integrate and dump filter. The introduced semi-analytical method can help us to easily select the time hopping codes to ensure the robustness against the multi-user interference and meanwhile to alleviate the non-coherent combining loss.● The main contribution of Part I is the proposal of applying fully digital solutions in non-coherent detection. The proposed digital non-coherent receiver is based on a time domain analog-to-digital converter, which has a high speed but a very low resolution to maintain a reasonable power consumption. Compared to its analog counterpart, itnot only significantly reduces the non-coherent combining loss but also offers a higher interference robustness. In particular, the one-bit receiver can effectively suppress strong multi-user interference and is thus advantageous in separating simultaneously operating piconets.The fully digital solutions overcome the difficulty of implementing long analog delay lines and make differential UWB detection possible. They also facilitate the development of various digital signal processing techniques such as multi-user detection and non-coherent multipath combining methods as well as the use of advanced modulationschemes (e.g., M-ary Walsh modulation).● Furthermore, we present a novel impulse radio UWB system based on frequency hopping, where both coherent and non-coherent receivers can be adopted. The key advantage is that the baseband bandwidth can be considerably reduced (e.g., lower than 500 MHz), which enables low-complexity implementation of the fully digital solutions. It opens up various research activities in the application field of wireless sensor networks. Part II of this thesis proposes adaptive widely linear reduced-rank techniques to suppress interferences for high data rate direct sequence UWB systems, where second-order non-circular signals are used. The reduced-rank techniques are designed to improve the convergence performance and the interference robustness especially when the received vector contains a large number of samples (due to a high sampling rate in UWB systems). The widely linear processing takes full advantage of the second-order statistics of the non-circular signals and enhances the estimation performance. The generic widely linear reduced-rank concept also has a great potential in the applications of other systems such as Direct Sequence Code Division Multiple Access (DS-CDMA), Multiple Input Multiple Output (MIMO) system, and Global System for Mobile Communications (GSM), or in other areas such as beamforming

    Modulation classification of digital communication signals

    Get PDF
    Modulation classification of digital communications signals plays an important role in both military and civilian sectors. It has the potential of replacing several receivers with one universal receiver. An automatic modulation classifier can be defined as a system that automatically identifies the modulation type of the received signal given that the signal exists and its parameters lie in a known range. This thesis addresses the need for a universal modulation classifier capable of classifying a comprehensive list of digital modulation schemes. Two classification approaches are presented: a decision-theoretic (DT) approach and a neural network (NN) approach. First classifiers are introduced that can classify ASK, PSK, and FSK signals. A decision tree is designed for the DT approach and a NN structure is formulated und trained to classify these signals. Both classifiers use the same key features derived from the intercepted signal. These features are based on the instantaneous amplitude, instantaneous phase, and instantaneous frequency of the intercepted signal, and the cumulates of its complex envelope. Threshold values for the DT approach are found from the minimum total error probabilities of the extracted key features at SNR of 20 to -5dB. The NN parameters are found by training the networks on the same data. The DT and NN classifiers are expanded to include CPM signals. Signals within the CPM class are also added to the classifiers and a separate decision tree and new NN structure are found far these signals. New key features to classify these signals are also introduced. The classifiers are then expanded further to include multiple access signals, followed by QAM, PSK8 and FSK8 signals. New features arc found to classify these signals. The final decision tree is able to accommodate a total of fifteen different modulation types. The NN structure is designed in a hierarchical fashion to optimise the classification performance of these fifteen digital modulation schemes. Both DT and NN classifiers are able to classify signals with more than 90% accuracy in the presence of additive white Gaussian within SNR ranging from 20 to 5dB. However, the performance of the NN classifier appears to be more robust as it degrades gradually at the SNRs of 0 and -5dB. At -5dB, the NN has an overall accuracy of 73.58%, whereas the DT classifier achieves only 47.3% accuracy. The overall accuracy of the NN classifier, over the combined SNR range of 20 to -5dB, is 90.7% compared to 84.56% for the DT classifier. Finally, the performances of these classifiers are tested in the presence of Rayleigh fading. The DT and NN classifier structures are modified to accommodate fading and again, new key features are introduced to accomplish this. With the modifications, the overall accuracy of the NN classifier, over the combined SNR range of 20 to -5dB and 120Hz Doppler shift, is 87.34% compared to 80.52% for the DT classifier

    Frequency-Hopped Multiple-Access Communications With Noncoherent M-ary OFDM-ASK

    No full text
    A noncoherent, bandwidth-efficient modulation scheme is proposed for frequency-hopping multiple-access (FH-MA) networks. The proposed scheme is a combination of noncoherent M-ary amplitude-shift keying (NMASK) and orthogonal frequency-division multiplexing (OFDM). Using this scheme minimizes the required data bandwidth. The number of frequency slots available to the users increases significantly for a fixed spread-spectrum bandwidth (BWSS). The effect of the multiple-access interference is reduced. Simple and accurate bit error rate expressions have been derived for FH-OFDM-MASK in additive white Gaussian noise channels and for FH-OFDM-ASK in Rayleigh fading channels
    corecore