53,186 research outputs found

    Model estimation and identification of manual controller objectives in complex tracking tasks

    Get PDF
    A methodology is presented for estimating the parameters in an optimal control structural model of the manual controller from experimental data on complex, multiinput/multioutput tracking tasks. Special attention is devoted to estimating the appropriate objective function for the task, as this is considered key in understanding the objectives and strategy of the manual controller. The technique is applied to data from single input/single output as well as multi input/multi outpuut experiments, and results discussed

    An intermittent predictive control approach to modelling sustained human motor control

    Get PDF
    Although human sustained control movements are continuous in nature there is still controversy on the mechanisms underlying such physiological systems. A popular topic of debate is whether human motor control mechanisms could be modelled as engineering control systems, and if so, what control algorithm is most appropriate. Since the early years of modelling sustained control tasks in human motor control the servomechanism has been an adequate model to describe human tracking tasks. Another continuous-time system model that is often used to model sustained control tasks is the predictive controller which is based on internal models and includes prediction and optimisation. On the other hand, studies have suggested intermittent behaviour of the ``human controller'' in sustained motor control tasks. This thesis investigated whether intermittent control is a suitable approach to describe sustained human motor control. It was investigated how well an intermittent control system model could approximate both the deterministic and non-deterministic parts of experimental data, from a visual-manual compensatory tracking task. Finally, a preliminary study was conducted to explore issues associated with the practical implementation of the intermittent control model. To fit the deterministic part of experimental data, a frequency domain identification method was used. Identification results obtained with an intermittent controller were compared against the results using continuous-time non-predictive and predictive controllers. The results show that the identified frequency response functions of the intermittent control model not only fit the frequency response functions derived from the experimental data well, but most importantly resulted in identified controller parameters which are similar to those identified using a predictive controller, and whose parameter values appear to be physiologically meaningful. A novel way to explain human variability, as represented by the non-deterministic part of the experimental data (the \emph{remnant}), was developed, based on an intermittent control model with variable intermittent interval. This model was compared against the established paradigm, in which variability is explained by a predictive controller with added noise, either signal dependent control signal noise, or observation noise. The study has shown that the intermittent controller with a variable intermittent interval could model the non-deterministic experimental data as well as the predictive controller model with added noise. This provides a new explanation for the source of remnant in human control as inherent to the controller structure, rather than as a noise signal, and enables a new interpretation for the physiological basis for human variability. Finally, the theoretical intermittent control model was implemented in real-time in the context of the physiological control mechanism of human standing balance. An experimental method was developed to apply automatic artificial balance of an inverted pendulum in the context of human standing, via functions electrical stimulation control of the lower leg muscles of a healthy subject. The significance of this study is, firstly, that frequency domain identification was applied for the first time with intermittent control, and it could be shown that both intermittent and predictive control models can model deterministic experimental data from manual tracking tasks equally well. Secondly, for the first time the inherent variability, which is represented by the remnant signal, in human motor control tasks could be modelled as part of the structure of the intermittent controller rather than as an added noise model. Although, the experimental method to apply automatic artificial balance of an inverted pendulum in the context of human standing was not successful, the intermittent controller was implemented for the first time in real-time and combined with electrical muscle stimulation to control a physiological mechanism

    Feedback Control of Human Stress with Music Modulation

    Get PDF
    Mental stress has known detrimental effects on human health, however few algorithmic methods of reducing mental stress have been widely explored. While the act of listening to music has been shown to have beneficial effects for stress reduction, and furthermore, audio players have been designed to selectively choose music and other inputs with the intent of stress reduction, limited work has been conducted for real-time stress reduction with feedback control using physiological input signals such as heart rate or Heart Rate Variability (HRV). This thesis proposes a feedback controller that uses HRV signals from wearable sensors to perform real-time (< 1 second) modulations to music through tempo changes with the goal to regulate and reduce stress levels. A standardized, stress inducing test based on the popular Stroop test is also introduced, which has been shown to induce acute stress in subjects and can be used as a testing benchmark for controller design. Ultimately, a controller is presented that when used is not only able to maintain stress levels during stress-inducing inputs to a human but even provides de-stressing effects beyond baseline performance.No embargoAcademic Major: Electrical and Computer Engineerin

    Feedback control of unsupported standing in paraplegia. Part I: optimal control approach

    Get PDF
    This is the first of a pair of papers which describe an investigation into the feasibility of providing artificial balance to paraplegics using electrical stimulation of the paralyzed muscles. By bracing the body above the shanks, only stimulation of the plantarflexors is necessary. This arrangement prevents any influence from the intact neuromuscular system above the spinal cord lesion. Here, the authors extend the design of the controllers to a nested-loop LQG (linear quadratic Gaussian) stimulation controller which has ankle moment feedback (inner loops) and inverted pendulum angle feedback (outer loop). Each control loop is tuned by two parameters, the control weighting and an observer rise-time, which together determine the behavior. The nested structure was chosen because it is robust, despite changes in the muscle properties (fatigue) and interference from spasticity

    The REVERE project:Experiments with the application of probabilistic NLP to systems engineering

    Get PDF
    Despite natural language’s well-documented shortcomings as a medium for precise technical description, its use in software-intensive systems engineering remains inescapable. This poses many problems for engineers who must derive problem understanding and synthesise precise solution descriptions from free text. This is true both for the largely unstructured textual descriptions from which system requirements are derived, and for more formal documents, such as standards, which impose requirements on system development processes. This paper describes experiments that we have carried out in the REVERE1 project to investigate the use of probabilistic natural language processing techniques to provide systems engineering support
    corecore