63 research outputs found

    Multi-user spatial diversity techniques for wireless communication systems

    Get PDF
    Multiple antennas at the transmitter and receiver, formally known as multiple-input multiple-output (MIMO) systems have the potential to either increase the data rates through spatial multiplexing or enhance the quality of services through exploitation of diversity. In this thesis, the problem of downlink spatial multiplexing, where a base station (BS) serves multiple users simultaneously in the same frequency band is addressed. Spatial multiplexing techniques have the potential to make huge saving in the bandwidth utilization. We propose spatial diversity techniques with and without the assumption of perfect channel state information (CSI) at the transmitter. We start with proposing improvement to signal-to-leakage ratio (SLR) maximization based spatial multiplexing techniques for both fiat fading and frequency selective channels. [Continues.

    Ultra-Reliable Short-Packet Communications: Fundamental Limits and Enabling Technologies

    Get PDF
    The paradigm shift from 4G to 5G communications, anticipated to enable ultra-reliable low-latency communications (URLLC), will enforce a radical change in the design of wireless communication systems. Unlike in 4G systems, where the main objective is to provide a large transmission rate, in URLLC, as implied by its name, the objective is to enable transmissions with low latency and, simultaneously, very high reliability. Since low latency implies the use of short data packets, the tension between blocklength and reliability is studied in URLLC.Several key enablers for URLLC communications have been designated in the literature. Of special importance are diversity-enabling technologies such as multiantenna systems and feedback protocols. Furthermore, it is not only important to introduce additional diversity by means of the above examples, one must also guarantee that thescarce number of channel uses are used in an optimal way. Therefore, it is imperative to develop design guidelines for how to enable reliable detection of incoming data, how to acquire channel-state information, and how to construct efficient short-packet channel codes. The development of such guidelines is at the heart of this thesis. This thesis focuses on the fundamental performance of URLLC-enabling technologies. Specifically, we provide converse (upper) bounds and achievability (lower) bounds on the maximum coding rate, based on finite-blocklength information theory, for systems that employ the key enablers outlined above. With focus on the wireless channel, modeled via a block-fading assumption, we are able to provide answers to questions like: howto optimally utilize spatial and frequency diversity, how far from optimal short-packet channel codes perform, how multiantenna systems should be designed to serve a given number of users, and how to design feedback schemes when the feedback link is noisy. In particular, this thesis is comprised out of four papers. In Paper A, we study the short-packet performance over the Rician block-fading channel. In particular, we present achievability bounds for pilot-assisted transmission with several different decoders that allow us to quantify the impact, on the achievable performance, of imposed pilots and mismatched decoding. Furthermore, we design short-packet channel codes that perform within 1 dB of our achievability bounds. Paper B studies multiuser massive multiple-input multiple-output systems with short packets. We provide an achievability bound on the average error probability over quasistatic spatially correlated Rayleigh-fading channels. The bound applies to arbitrary multiuser settings, pilot-assisted transmission, and mismatched decoding. This makes it suitable to assess the performance in the uplink/downlink for arbitrary linear signal processing. We show that several lessons learned from infinite-blocklength analyses carry over to the finite-blocklength regime. Furthermore, for the multicell setting with randomly placed users, pilot contamination should be avoided at all cost and minimum mean-squared error signal processing should be used to comply with the stringent requirements of URLLC.In Paper C, we consider sporadic transmissions where the task of the receiver is to both detect and decode an incoming packet. Two novel achievability bounds, and a novel converse bound are presented for joint detection-decoding strategies. It is shown that errors associated with detection deteriorates performance significantly for very short packet sizes. Numerical results also indicate that separate detection-decoding strategies are strictly suboptimal over block-fading channels.Finally, in Paper D, variable-length codes with noisy stop-feedback are studied via a novel achievability bound on the average service time and the average error probability. We use the bound to shed light on the resource allocation problem between the forward and the feedback channel. For URLLC applications, it is shown that enough resources must be assigned to the feedback link such that a NACK-to-ACK error becomes rarer than the target error probability. Furthermore, we illustrate that the variable-length stop-feedback scheme outperforms state-of-the-art fixed-length no-feedback bounds even when the stop-feedback bit is noisy

    Técnicas de pré-codificação para sistemas multicelulares coordenados

    Get PDF
    Doutoramento em TelecomunicaçõesCoordenação Multicélula é um tópico de investigação em rápido crescimento e uma solução promissora para controlar a interferência entre células em sistemas celulares, melhorando a equidade do sistema e aumentando a sua capacidade. Esta tecnologia já está em estudo no LTEAdvanced sob o conceito de coordenação multiponto (COMP). Existem várias abordagens sobre coordenação multicélula, dependendo da quantidade e do tipo de informação partilhada pelas estações base, através da rede de suporte (backhaul network), e do local onde essa informação é processada, i.e., numa unidade de processamento central ou de uma forma distribuída em cada estação base. Nesta tese, são propostas técnicas de pré-codificação e alocação de potência considerando várias estratégias: centralizada, todo o processamento é feito na unidade de processamento central; semidistribuída, neste caso apenas parte do processamento é executado na unidade de processamento central, nomeadamente a potência alocada a cada utilizador servido por cada estação base; e distribuída em que o processamento é feito localmente em cada estação base. Os esquemas propostos são projectados em duas fases: primeiro são propostas soluções de pré-codificação para mitigar ou eliminar a interferência entre células, de seguida o sistema é melhorado através do desenvolvimento de vários esquemas de alocação de potência. São propostas três esquemas de alocação de potência centralizada condicionada a cada estação base e com diferentes relações entre desempenho e complexidade. São também derivados esquemas de alocação distribuídos, assumindo que um sistema multicelular pode ser visto como a sobreposição de vários sistemas com uma única célula. Com base neste conceito foi definido uma taxa de erro média virtual para cada um desses sistemas de célula única que compõem o sistema multicelular, permitindo assim projectar esquemas de alocação de potência completamente distribuídos. Todos os esquemas propostos foram avaliados em cenários realistas, bastante próximos dos considerados no LTE. Os resultados mostram que os esquemas propostos são eficientes a remover a interferência entre células e que o desempenho das técnicas de alocação de potência propostas é claramente superior ao caso de não alocação de potência. O desempenho dos sistemas completamente distribuídos é inferior aos baseados num processamento centralizado, mas em contrapartida podem ser usados em sistemas em que a rede de suporte não permita a troca de grandes quantidades de informação.Multicell coordination is a promising solution for cellular wireless systems to mitigate inter-cell interference, improving system fairness and increasing capacity and thus is already under study in LTE-A under the coordinated multipoint (CoMP) concept. There are several coordinated transmission approaches depending on the amount of information shared by the transmitters through the backhaul network and where the processing takes place i.e. in a central processing unit or in a distributed way on each base station. In this thesis, we propose joint precoding and power allocation techniques considering different strategies: Full-centralized, where all the processing takes place at the central unit; Semi-distributed, in this case only some process related with power allocation is done at the central unit; and Fulldistributed, where all the processing is done locally at each base station. The methods are designed in two phases: first the inter-cell interference is removed by applying a set of centralized or distributed precoding vectors; then the system is further optimized by centralized or distributed power allocation schemes. Three centralized power allocation algorithms with per-BS power constraint and different complexity tradeoffs are proposed. Also distributed power allocation schemes are proposed by considering the multicell system as superposition of single cell systems, where we define the average virtual bit error rate (BER) of interference-free single cell system, allowing us to compute the power allocation coefficients in a distributed manner at each BS. All proposed schemes are evaluated in realistic scenarios considering LTE specifications. The numerical evaluations show that the proposed schemes are efficient in removing inter-cell interference and improve system performance comparing to equal power allocation. Furthermore, fulldistributed schemes can be used when the amounts of information to be exchanged over the backhaul is restricted, although system performance is slightly degraded from semi-distributed and full-centralized schemes, but the complexity is considerably lower. Besides that for high degrees of freedom distributed schemes show similar behaviour to centralized ones

    Robust transmit beamforming design using outage probability specification

    Get PDF
    Transmit beamforming (precoding) is a powerful technique for enhancing the channel capacity and reliability of multiple-input and multiple-output (MIMO) wireless systems. The optimum exploitation of the benefits provided by MIMO systems can be achieved when a perfect channel state information at transmitter (CSIT) is available. In practices, however, the channel knowledge is generally imperfect at transmitter because of the inevitable errors induced by finite feedback channel capacity, quantization and other physical constraints. Such errors degrade the system performance severely. Hence, robustness has become a crucial issue. Current robust designs address the channel imperfections with the worst-case and stochastic approaches. In worst-case analysis, the channel uncertainties are considered as deterministic and norm-bounded, and the resulting design is a conservative optimization that guarantees a certain quality of service (QoS) for every allowable perturbation. The latter approach focuses on the average performance under the assumption of channel statistics, such as mean and covariance. The system performance could break down when persistent extreme errors occur. Thus, an outage probability-based approach is developed by keeping a low probability that channel condition falls below an acceptable level. Compared to the aforementioned methods, this approach can optimize the average performance as well as consider the extreme scenarios proportionally. This thesis implements the outage-probability specification into transmit beamforming design for three scenarios: the single-user MIMO system and the corresponding adaptive modulation scheme as well as the multi-user MIMO system. In a single-user MIMO system, the transmit beamformer provides the maximum average received SNR and ensures the robustness to the CSIT errors by introducing probabilistic constraint on the instantaneous SNR. Beside the robustness against channel imperfections, the outage probability-based approach also provides a tight BER bound for adaptive modulation scheme, so that the maximum transmission rate can be achieved by taking advantage of transmit beamforming. Moreover, in multi-user MIMO (MU-MIMO) systems, the leakage power is accounted by probability measurement. The resulting transmit beamformer is designed based on signal-to-leakage-plus-noise ratio (SLNR) criteria, which maximizes the average received SNR and guarantees the least leakage energy from the desired user. In such a setting, an outstanding BER performance can be achieved as well as high reliability of signal-to-interference-plus-noise ratio (SINR). Given the superior overall performances and significantly improved robustness, the probabilistic approach provides an attractive alternative to existing robust techniques under imperfect channel information at transmitter

    Signal Processing in Arrayed MIMO Systems

    No full text
    Multiple-Input Multiple-Output (MIMO) systems, using antenna arrays at both receiver and transmitter, have shown great potential to provide high bandwidth utilization efficiency. Unlike other reported research on MIMO systems which often assumes independent antennas, in this thesis an arrayed MIMO system framework is proposed, which provides a richer description of the channel charac- teristics and additional degrees of freedom in designing communication systems. Firstly, the spatial correlated MIMO system is studied as an array-to-array system with each array (Tx or Rx) having predefined constrained aperture. The MIMO system is completely characterized by its transmit and receive array man- ifolds and a new spatial correlation model other than Kronecker-based model is proposed. As this model is based on array manifolds, it enables the study of the effect of array geometry on the capacity of correlated MIMO channels. Secondly, to generalize the proposed arrayed MIMO model to a frequency selective fading scenario, the framework of uplink MIMO DS-CDMA (Direct- Sequence Code Division Multiple Access) systems is developed. DOD estimation is developed based on transmit beamrotation. A subspace-based joint DOA/TOA estimation scheme as well as various spatial temporal reception algorithms is also proposed. Finally, the downlink MIMO-CDMA systems in multiple-access multipath fading channels are investigated. Linear precoder and decoder optimization problems are studied under different criterions. Optimization approaches with different power allocation schemes are investigated. Sub-optimization approaches with close-form solution and thus less computation complexity are also proposed

    Massive Multi-Antenna Communications with Low-Resolution Data Converters

    Get PDF
    Massive multi-user (MU) multiple-input multiple-output (MIMO) will be a core technology in future cellular communication systems. In massive MU-MIMO systems, the number of antennas at the base station (BS) is scaled up by several orders of magnitude compared to traditional multi-antenna systems with the goals of enabling large gains in capacity and energy efficiency. However, scaling up the number of active antenna elements at the BS will lead to significant increases in power consumption and system costs unless power-efficient and low-cost hardware components are used. In this thesis, we investigate the performance of massive MU-MIMO systems for the case when the BS is equipped with low-resolution data converters.First, we consider the massive MU-MIMO uplink for the case when the BS uses low-resolution analog-to-digital converters (ADCs) to convert the received signal into the digital domain. Our focus is on the case where neither the transmitter nor the receiver have any a priori channel state information (CSI), which implies that the channel realizations have to be learned through pilot transmission followed by BS-side channel estimation, based on coarsely quantized observations. We derive a low-complexity channel estimator and present lower bounds and closed-form approximations for the information-theoretic rates achievable with the proposed channel estimator together with conventional linear detection algorithms. Second, we consider the massive MU-MIMO downlink for the case when the BS uses low-resolution digital-to-analog converters (DACs) to generate the transmit signal. We derive lower bounds and closed-form approximations for the achievable rates with linear precoding under the assumption that the BS has access to perfect CSI. We also propose novel nonlinear precoding algorithms that are shown to significantly outperform linear precoding for the extreme case of 1-bit DACs. Specifically, for the case of symbol-rate 1-bit DACs and frequency-flat channels, we develop a multitude of nonlinear precoders that trade between performance and complexity. We then extend the most promising nonlinear precoders to the case of oversampling 1-bit DACs and orthogonal frequency-division multiplexing for operation over frequency-selective channels.Third, we extend our analysis to take into account other hardware imperfections such as nonlinear amplifiers and local oscillators with phase noise.The results in this thesis suggest that the resolution of the ADCs and DACs in massive MU-MIMO systems can be reduced significantly compared to what is used in today\u27s state-of-the-art communication systems, without significantly reducing the overall system performance
    corecore