95 research outputs found

    Signal Processing for Compressed Sensing Multiuser Detection

    Get PDF
    The era of human based communication was longly believed to be the main driver for the development of communication systems. Already nowadays we observe that other types of communication impact the discussions of how future communication system will look like. One emerging technology in this direction is machine to machine (M2M) communication. M2M addresses the communication between autonomous entities without human interaction in mind. A very challenging aspect is the fact that M2M strongly differ from what communication system were designed for. Compared to human based communication, M2M is often characterized by small and sporadic uplink transmissions with limited data-rate constraints. While current communication systems can cope with several 100 transmissions, M2M envisions a massive number of devices that simultaneously communicate to a central base-station. Therefore, future communication systems need to be equipped with novel technologies facilitating the aggregation of massive M2M. The key design challenge lies in the efficient design of medium access technologies that allows for efficient communication with small data packets. Further, novel physical layer aspects have to be considered in order to reliable detect the massive uplink communication. Within this thesis physical layer concepts are introduced for a novel medium access technology tailored to the demands of sporadic M2M. This concept combines advances from the field of sporadic signal processing and communications. The main idea is to exploit the sporadic structure of the M2M traffic to design physical layer algorithms utilizing this side information. This concept considers that the base-station has to jointly detect the activity and the data of the M2M nodes. The whole framework of joint activity and data detection in sporadic M2M is known as Compressed Sensing Multiuser Detection (CS-MUD). This thesis introduces new physical layer concepts for CS-MUD. One important aspect is the question of how the activity detection impacts the data detection. It is shown that activity errors have a fundamentally different impact on the underlying communication system than data errors have. To address this impact, this thesis introduces new algorithms that aim at controlling or even avoiding the activity errors in a system. It is shown that a separate activity and data detection is a possible approach to control activity errors in M2M. This becomes possible by considering the activity detection task in a Bayesian framework based on soft activity information. This concept allows maintaining a constant and predictable activity error rate in a system. Beyond separate activity and data detection, the joint activity and data detection problem is addressed. Here a novel detector based on message passing is introduced. The main driver for this concept is the extrinsic information exchange between different entities being part of a graphical representation of the whole estimation problem. It can be shown that this detector is superior to state-of-the-art concepts for CS-MUD. Besides analyzing the concepts introduced simulatively, this thesis also shows an implementation of CS-MUD on a hardware demonstrator platform using the algorithms developed within this thesis. This implementation validates that the advantages of CS-MUD via over-the-air transmissions and measurements under practical constraints

    Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals

    Get PDF
    Wideband analog signals push contemporary analog-to-digital conversion systems to their performance limits. In many applications, however, sampling at the Nyquist rate is inefficient because the signals of interest contain only a small number of significant frequencies relative to the bandlimit, although the locations of the frequencies may not be known a priori. For this type of sparse signal, other sampling strategies are possible. This paper describes a new type of data acquisition system, called a random demodulator, that is constructed from robust, readily available components. Let K denote the total number of frequencies in the signal, and let W denote its bandlimit in Hz. Simulations suggest that the random demodulator requires just O(K log(W/K)) samples per second to stably reconstruct the signal. This sampling rate is exponentially lower than the Nyquist rate of W Hz. In contrast with Nyquist sampling, one must use nonlinear methods, such as convex programming, to recover the signal from the samples taken by the random demodulator. This paper provides a detailed theoretical analysis of the system's performance that supports the empirical observations.Comment: 24 pages, 8 figure

    SPECTRUM SENSING USING SUB-NYQUIST RATE SAMPLING

    Get PDF
    • …
    corecore