95 research outputs found

    Wave tomography

    Get PDF

    Individual and joint 2-D elastic full-waveform inversion of Rayleigh and Love waves

    Get PDF
    We investigate the performance of the individual 2-D elastic full-waveform inversion (FWI) of Rayleigh and Love waves as well as the feasibility of a simultaneous joint FWI of both wave types. The FWI of surface waves can provide a valuable contribution to near-surface investigations, since they are mainly sensitive to the S-wave velocity and hold a high signal-to-noise ratio. In synthetic reconstruction tests we compare the performance of the individual wave type inversions and explore the benefits of a simultaneous joint inversion. In these tests both individual wave type inversions perform similarly well, given that the initial P-wave velocity model is accurate enough. In this case the joint FWI further improves the result. For an inaccurate initial P-wave velocity model, we observe artifacts in the results of the Rayleigh wave FWI and the joint FWI. Subsequently, we recorded a near-surface field dataset to verify the results by a realistic example. In the field data application the Love wave FWI is superior to the Rayleigh wave FWI, possibly due to the initial P-wave velocity model. Also in this case the joint FWI further improves the inversion result

    Characterisation of the subglacial environment using geophysical constrained Bayesian inversion techniques

    Get PDF
    An accurate characterization of the inaccessible subglacial environment is key to accurately modelling the dynamic behaviour of ice sheets and glaciers, crucial for predicting sea-level rise. The composition and water content of subglacial material can be inferred from measurements of shear wave velocity (Vs) and bulk electrical resistivity (R), themselves derived from Rayleigh wave dispersion curves and transient electromagnetic (TEM) soundings. Conventional Rayleigh wave and TEM inversions can suffer from poor resolution and non-uniqueness. In this thesis, I present a novel constrained inversion methodology which applies a Markov chain Monte Carlo implementation of Bayesian inversion to produce probability distributions of geophysical parameters. MuLTI (Multimodal Layered Transdimensional Inversion) is used to derive Vs from Rayleigh wave dispersion curves, and its TEM variant, MuLTI-TEM, for evaluating bulk electrical resistivity. The methodologies can include independent depth constraints, drawn from external data sources (e.g., boreholes or other geophysical data), which significantly improves the resolution compared to conventional unconstrained inversions. Compared to such inversions, synthetic studies suggested that MuLTI reduces the error between the true and best-fit models by a factor of 10, and reduces the vertically averaged spread of the Vs distribution twofold, based on the 95% credible intervals. MuLTI and MuLTI-TEM were applied to derive Vs and R profiles from seismic and TEM electromagnetic data acquired on the terminus of the Norwegian glacier Midtdalsbreen. Three subglacial material classifications were determined: sediment (Vs 1600 m/s, R > 500 Ωm) and weathered/fractured bedrock containing saline water (Vs > 1900 m/s, R < 50 Ωm). These algorithms offer a step-change in our ability to resolve and quantify the uncertainties in subsurface inversions, and show promise for constraining the properties of subglacial aquifers beneath Antarctic ice masses. MuLTI and MuLTITEM have both been made publicly available via GitHub to motivate users, in the cryosphere and other environmental settings, for continued advancement

    The analysis of UWB Radar System for Microwave Imaging Application.

    Get PDF
    PhDMany research groups have conducted the investigation into UWB imaging radar system for various applications over the last decade. Due to the demanding security requirements, it is desirable to devise a convenient and reliable imaging system for concealed weapon detection. Therefore, this thesis presents my research into a low cost and compact UWB imaging radar system for security purpose. This research consists of two major parts: building the UWB imaging system and testing the imaging algorithms. Firstly, the time-domain UWB imaging radar system is developed based on a modulating scheme, achieving a receiver sensitivity of -78dBm and a receiver dynamic range of 69dB. A rotary UWB antenna linear array, comprising one central transmitting antenna and four side-by-side receiving antennas, is adopted to form 2D array in order to achieve a better cross-range resolution of the target. In operation, the rotation of the antenna array is automatically controlled through the computerised modules in LabVIEW. Two imaging algorithms have been extensively tested in the developed UWB radar system for a number of scenarios. In simulation, the “Delay and Sum (DAS)” method has been shown to be effective at mapping out the metallic targets in free space, but prone to errors in more complicated environments. However, the “Time Reversal (TR)” method can produce better images in more complex scenarios, where traditionally unfavorable multi-path interference becomes a valuable asset. These observations were verified in experiment in different testing environments, such as penetration through wooden boards, clutters and a stuffed sport bag. The detectable size of a single target is 8×8×1 cm3 with 30cm distance in a stuffed bag, while DAS can achieve the estimation of 7cm cross-range resolution and 15cm down-range resolution for two targets with sizes of 8×8×1 cm3 and 10×10×1 cm3, which fits within the theoretical prediction. In contrast, TR can distinguish them with a superior 4cm cross range resolution

    Borehole seismic methods in high permeability sandstone

    Get PDF
    In this research complex field borehole seismic measurements are made at a range of frequencies in weakly-consolidated, high-permeability sandstones. New 3D visualisation of phase velocity dispersion derived from multifrequency full waveforms reveals overlapping wave-modes in both open drill holes and sand-screened wells which appear to be sensitive to hydraulic permeability. Multidisciplinary studies of virtual source tomography, vertical seismic profiling and full waveform sonic provide credible information for understanding heterogeneous aquifers with complex sedimentary structures

    Wave theory modeling of three-dimensional seismo-acoustic reverberation in ocean waveguides

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1995.Includes bibliographical references (leaves 175-182).by Henry Fan.Ph.D

    AFIT School of Engineering Contributions to Air Force Research and Technology. Calendar Year 1971

    Get PDF
    This report contains abstracts of Master of Science theses and Doctoral Dissertations completed during the 1971 calendar year at the School of Engineering, Air Force Institute of Technology

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance
    corecore