26 research outputs found

    Multibranch Autocorrelation Method for Doppler Estimation in Underwater Acoustic Channels

    Get PDF
    In underwater acoustic (UWA) communications, Doppler estimation is one of the major stages in a receiver. Two Doppler estimation methods are often used: the cross-ambiguity function (CAF) method and the single-branch autocorrelation (SBA) method. The former results in accurate estimation but with a high complexity, whereas the latter is less complicated but also less accurate. In this paper, we propose and investigate a multibranch autocorrelation (MBA) Doppler estimation method. The proposed method can be used in communication systems with periodically transmitted pilot signals or repetitive data transmission. For comparison of the Doppler estimation methods, we investigate an orthogonal frequency-division multiplexing (OFDM) communication system in multiple dynamic scenarios using the Waymark simulator, allowing virtual UWA signal transmission between moving transmitter and receiver. For the comparison, we also use the OFDM signals recorded in a sea trial. The comparison shows that the receiver with the proposed MBA Doppler estimation method outperforms the receiver with the SBA method and its detection performance is close to that of the receiver with the CAF method, but with a significantly lower complexity

    Performance evaluation of T-transform based OFDM in underwater acoustic channels

    Get PDF
    PhD ThesisRecently there has been an increasing trend towards the implementation of orthogonal frequency division multiplexing (OFDM) based multicarrier communication systems in underwater acoustic communications. By dividing the available bandwidth into multiple sub-bands, OFDM systems enable reliable transmission over long range dispersive channels. However OFDM is prone to impairments such as severe frequency selective fading channels, motioned induced Doppler shift and high peak-to-average-power ratio (PAPR). In order to fully exploit the potential of OFDM in UWA channels, those issues have received a great deal of attention in recent research. With the aim of improving OFDM's performance in UWA channels, a T-transformed based OFDM system is introduced using a low computational complexity T-transform that combines the Walsh-Hadamard transform (WHT) and the discrete Fourier transform (DFT) into a single fast orthonormal unitary transform. Through real-world experiment, performance comparison between the proposed T-OFDM system and conventional OFDM system revealed that T-OFDM performs better than OFDM with high code rate in frequency selective fading channels. Furthermore, investigation of different equalizer techniques have shown that the limitation of ZF equalizers affect the T-OFDM more (one bad equalizer coefficient affects all symbols) and so developed a modified ZF equalizer with outlier detection which provides major performance gain without excessive computation load. Lastly, investigation of PAPR reduction methods delineated that T-OFDM has inherently lower PAPR and it is also far more tolerant of distortions introduced by the simple clipping method. As a result, lower PAPR can be achieved with minimal overhead and so outperforming OFDM for a given power limit at the transmitter

    Single carrier frequency domain equalization and energy efficiency optimization for MIMO cognitive radio.

    Get PDF
    This dissertation studies two separate topics in wireless communication systems. One topic focuses on the Single Carrier Frequency Domain Equalization (SC-FDE), which is a promising technique to mitigate the multipath effect in the broadband wireless communication. Another topic targets on the energy efficiency optimization in a multiple input multiple output (MIMO) cognitive radio network. For SC-FDE, the conventional linear receivers suffer from the noise amplification in deep fading channel. To overcome this, a fractional spaced frequency domain (FSFD) receiver based on frequency domain oversampling (FDO) is proposed for SC-FDE to improve the performance of the linear receiver under deep fading channels. By properly designing the guard interval, a larger sized Discrete Fourier Transform (DFT) is equipped to oversample the received signal in frequency domain. Thus, the effect of frequency-selective fading can still be eliminated by a one-tap frequency domain filter. Two types of FSFD receivers are proposed based on the least square (LS) and minimum mean square error (MMSE) criterion. Both the semi-analytical analysis and simulation results are given to evaluate the performance of the proposed receivers. Another challenge in SC-FDE is the in-phase/quadrature phase (IQ) imbalance caused by unideal radio frequency (RF) front-end at the transmitter or the receiver. Most existing works in single carrier transmission employ linear compensation methods, such as LS and MMSE, to combat the interference caused by IQ imbalance. Actually, for single carrier transmissions, it is possible for the receivers to adopt advanced nonlinear compensation methods to improve the system performance under IQ imbalance. For such purpose, an iterative decision feedback receiver is proposed to compensate the IQ imbalance caused by unideal RF front-end in SC-FDE. Numerical results show that the proposed iterative IQ imbalance compensation can significantly improve the performance of SC-FDE system under IQ imbalance compared with the conventional linear method. For the energy efficiency optimization in the MIMO cognitive radio network, multiple secondary users (SUs) coexisting with a primary user (PU) adjust their antenna radiation patterns and power allocations to achieve energy-efficient transmission. The optimization problems are formulated to maximize the energy efficiency of a cognitive radio network in both distributed and centralized point of views. Also, constraints on the transmission power and the interference to PU are introduced to protect the PUā€™s transmission. In order to solve the non-convex optimization problems, convex relaxations are used to transform them into equivalent problems with better tractability. Then three optimization algorithms are proposed to find the energy-efficient transmission strategies. Simulation results show that the proposed energy-efficiency optimization algorithms outperform the existing algorithms

    Multiple-Resampling Receiver Design for OFDM Over Doppler-Distorted Underwater Acoustic Channels

    Get PDF
    Cataloged from PDF version of article.In this paper, we focus on orthogonal frequency-divisionmultiplexing (OFDM) receiver designs for underwater acoustic (UWA) channels with user- and/or path-specific Doppler scaling distortions. The scenario is motivated by the cooperative communications framework, where distributed transmitter/receiver pairs may experience significantly different Doppler distortions, as well as by the single-user scenarios, where distinct Doppler scaling factors may exist among different propagation paths. The conventional approach of frontā€“end resampling that corrects for common Doppler scalingmay not be appropriatein such scenarios, rendering a post-fast-Fourier-transform (FFT) signal that is contaminated by user- and/or path-specific intercarrier interference. To counteract this problem, we propose a family of frontā€“end receiver structures thatutilizemultiple-resampling (MR)branches,eachmatched to the Doppler scaling factor of a particular user and/or path. Following resampling, FFT modules transform the Doppler-compensated signals into the frequency domain for further processing through linear or nonlinear detection schemes. As part of the overall receiver structure, a gradientā€“descent approachis also proposed to refine the channel estimates obtained by standard sparse channel estimators. The effectiveness and robustness of the proposed receivers are demonstrated via simulations, as well as emulations based on real data collected during the 2010 Mobile Acoustic Communications Experiment (MACE10, Marthaā€™s Vineyard, MA) and the 2008 Kauai Acomms MURI (KAM08, Kauai, HI) experiment

    Design and implementation of low complexity wake-up receiver for underwater acoustic sensor networks

    Get PDF
    This thesis designs a low-complexity dual Pseudorandom Noise (PN) scheme for identity (ID) detection and coarse frame synchronization. The two PN sequences for a node are identical and are separated by a specified length of gap which serves as the ID of different sensor nodes. The dual PN sequences are short in length but are capable of combating severe underwater acoustic (UWA) multipath fading channels that exhibit time varying impulse responses up to 100 taps. The receiver ID detection is implemented on a microcontroller MSP430F5529 by calculating the correlation between the two segments of the PN sequence with the specified separation gap. When the gap length is matched, the correlator outputs a peak which triggers the wake-up enable. The time index of the correlator peak is used as the coarse synchronization of the data frame. The correlator is implemented by an iterative algorithm that uses only one multiplication and two additions for each sample input regardless of the length of the PN sequence, thus achieving low computational complexity. The real-time processing requirement is also met via direct memory access (DMA) and two circular buffers to accelerate data transfer between the peripherals and the memory. The proposed dual PN detection scheme has been successfully tested by simulated fading channels and real-world measured channels. The results show that, in long multipath channels with more than 60 taps, the proposed scheme achieves high detection rate and low false alarm rate using maximal-length sequences as short as 31 bits to 127 bits, therefore it is suitable as a low-power wake-up receiver. The future research will integrate the wake-up receiver with Digital Signal Processors (DSP) for payload detection. --Abstract, page iv

    Experimental assessment of timeā€reversed OFDM underwater communications

    Full text link

    Robust frequency-domain turbo equalization for multiple-input multiple-output (MIMO) wireless communications

    Get PDF
    This dissertation investigates single carrier frequency-domain equalization (SC-FDE) with multiple-input multiple-output (MIMO) channels for radio frequency (RF) and underwater acoustic (UWA) wireless communications. It consists of five papers, selected from a total of 13 publications. Each paper focuses on a specific technical challenge of the SC-FDE MIMO system. The first paper proposes an improved frequency-domain channel estimation method based on interpolation to track fast time-varying fading channels using a small amount of training symbols in a large data block. The second paper addresses the carrier frequency offset (CFO) problem using a new group-wise phase estimation and compensation algorithm to combat phase distortion caused by CFOs, rather than to explicitly estimate the CFOs. The third paper incorporates layered frequency-domain equalization with the phase correction algorithm to combat the fast phase rotation in coherent communications. In the fourth paper, the frequency-domain equalization combined with the turbo principle and soft successive interference cancelation (SSIC) is proposed to further improve the bit error rate (BER) performance of UWA communications. In the fifth paper, a bandwidth-efficient SC-FDE scheme incorporating decision-directed channel estimation is proposed for UWA MIMO communication systems. The proposed algorithms are tested by extensive computer simulations and real ocean experiment data. The results demonstrate significant performance improvements in four aspects: improved channel tracking, reduced BER, reduced computational complexity, and enhanced data efficiency --Abstract, page iv
    corecore