376 research outputs found

    Channel Estimation for Millimeter-Wave Massive MIMO with Hybrid Precoding over Frequency-Selective Fading Channels

    Full text link
    Channel estimation for millimeter-wave (mmWave) massive MIMO with hybrid precoding is challenging, since the number of radio frequency (RF) chains is usually much smaller than that of antennas. To date, several channel estimation schemes have been proposed for mmWave massive MIMO over narrow-band channels, while practical mmWave channels exhibit the frequency-selective fading (FSF). To this end, this letter proposes a multi-user uplink channel estimation scheme for mmWave massive MIMO over FSF channels. Specifically, by exploiting the angle-domain structured sparsity of mmWave FSF channels, a distributed compressive sensing (DCS)-based channel estimation scheme is proposed. Moreover, by using the grid matching pursuit strategy with adaptive measurement matrix, the proposed algorithm can solve the power leakage problem caused by the continuous angles of arrival or departure (AoA/AoD). Simulation results verify that the good performance of the proposed solution.Comment: 4 pages, 3 figures, accepted by IEEE Communications Letters. This paper may be the first one that investigates the frequency selective fading channel estimation for mmWave massive MIMO systems with hybrid precoding. Key words: Millimeter-wave (mmWave) massive MIMO, frequency-selective fading, channel estimation, compressive sensing, hybrid precodin

    Low-Complexity Hybrid Beamforming for Massive MIMO Systems in Frequency-Selective Channels

    Get PDF
    Hybrid beamforming for frequency-selective channels is a challenging problem as the phase shifters provide the same phase shift to all of the subcarriers. The existing approaches solely rely on the channel's frequency response and the hybrid beamformers maximize the average spectral efficiency over the whole frequency band. Compared to state-of-the-art, we show that substantial sum-rate gains can be achieved, both for rich and sparse scattering channels, by jointly exploiting the frequency and time domain characteristics of the massive multiple-input multiple-output (MIMO) channels. In our proposed approach, the radio frequency (RF) beamformer coherently combines the received symbols in the time domain and, thus, it concentrates signal's power on a specific time sample. As a result, the RF beamformer flattens the frequency response of the "effective" transmission channel and reduces its root mean square delay spread. Then, a baseband combiner mitigates the residual interference in the frequency domain. We present the closed-form expressions of the proposed beamformer and its performance by leveraging the favorable propagation condition of massive MIMO channels and we prove that our proposed scheme can achieve the performance of fully-digital zero-forcing when number of employed phase shifter networks is twice the resolvable multipath components in the time domain.Comment: Accepted to IEEE Acces
    • …
    corecore