43,721 research outputs found

    Frequency-Domain Blind Source Separation with Permutation Control

    Get PDF
    This paper explores the problem of frequency-domain Blind Source Separation (BSS) of convolutive mixtures. The main difficulties of this approach lie in the so called permutation and amplitude problems. In order to solve the permutation ambiguity, a new hybrid approach is proposed, in which the Independent Component Analysis (ICA) processes across all frequency bins are concatenated and each of them is embedded with a permutation control unit. In each frequency bin, when the separation matrix is obtained by the ICA process, the control unit detects the possible permutation and aligns the matrix only if the permutation is confirmed. Then the final value of separation matrix is used to initialize the ICA iterations in the next frequency bin. The amplitude problem is addressed by utilizing the elements in estimated mixing matrix. The method is compared with conventional frequency-domain BSS approaches and the experimental results demonstrate superior performances of the proposed method

    Evaluation of emerging frequency domain convolutive blind source separation algorithms based on real room recordings

    Get PDF
    This paper presents a comparative study of three of the emerging frequency domain convolutive blind source separation (FDCBSS) techniques i.e. convolutive blind separation of non-stationary sources due to Parra and Spence, penalty function-based joint diagonalization approach for convolutive blind separation of nonstationary sources due to Wang et al. and a geometrically constrained multimodal approach for convolutive blind source separation due to Sanei et al. Objective evaluation is performed on the basis of signal to interference ratio (SIR), performance index (PI) and solution to the permutation problem. The results confirm that a multimodal approach is necessary to properly mitigate the permutation in BSS and ultimately to solve the cocktail party problem. In other words, it is to make BSS semiblind by exploiting prior geometrical information, and thereby providing the framework to find robust solutions for more challenging source separation with moving speakers

    A modified underdetermined blind source separation algorithm using competitive learning

    Get PDF
    The problem of underdetermined blind source separation is addressed. An advanced classification method based upon competitive learning is proposed for automatically determining the number of active sources over the observation. Its introduction in underdetermined blind source separation successfully overcomes the drawback of an existing method, in which the goal of separating more sources than the number of available mixtures is achieved by exploiting the sparsity of the non-stationary sources in the time-frequency domain. Simulation studies are presented to support the proposed approach

    A multimodal approach to blind source separation of moving sources

    Get PDF
    A novel multimodal approach is proposed to solve the problem of blind source separation (BSS) of moving sources. The challenge of BSS for moving sources is that the mixing filters are time varying; thus, the unmixing filters should also be time varying, which are difficult to calculate in real time. In the proposed approach, the visual modality is utilized to facilitate the separation for both stationary and moving sources. The movement of the sources is detected by a 3-D tracker based on video cameras. Positions and velocities of the sources are obtained from the 3-D tracker based on a Markov Chain Monte Carlo particle filter (MCMC-PF), which results in high sampling efficiency. The full BSS solution is formed by integrating a frequency domain blind source separation algorithm and beamforming: if the sources are identified as stationary for a certain minimum period, a frequency domain BSS algorithm is implemented with an initialization derived from the positions of the source signals. Once the sources are moving, a beamforming algorithm which requires no prior statistical knowledge is used to perform real time speech enhancement and provide separation of the sources. Experimental results confirm that by utilizing the visual modality, the proposed algorithm not only improves the performance of the BSS algorithm and mitigates the permutation problem for stationary sources, but also provides a good BSS performance for moving sources in a low reverberant environment
    • …
    corecore