3,036 research outputs found

    Modern Methods of Time-Frequency Warping of Sound Signals

    Get PDF
    Tato práce se zabývá reprezentací nestacionárních harmonických signálů s časově proměnnými komponentami. Primárně je zaměřena na Harmonickou transformaci a jeji variantu se subkvadratickou výpočetní složitostí, Rychlou harmonickou transformaci. V této práci jsou prezentovány dva algoritmy využívající Rychlou harmonickou transformaci. Prvni používá jako metodu odhadu změny základního kmitočtu sbírané logaritmické spektrum a druhá používá metodu analýzy syntézou. Oba algoritmy jsou použity k analýze řečového segmentu pro porovnání vystupů. Nakonec je algoritmus využívající metody analýzy syntézou použit na reálné zvukové signály, aby bylo možné změřit zlepšení reprezentace kmitočtově modulovaných signálů za použití Harmonické transformace.This thesis deals with representation of non-stationary harmonic signals with time-varying components. Its main focus is aimed at Harmonic Transform and its variant with subquadratic computational complexity, the Fast Harmonic Transform. Two algorithms using the Fast Harmonic Transform are presented. The first uses the gathered log-spectrum as fundamental frequency change estimation method, the second uses analysis-by-synthesis approach. Both algorithms are used on a speech segment to compare its output. Further the analysis-by-synthesis algorithm is applied on several real sound signals to measure the increase in the ability to represent real frequency-modulated signals using the Harmonic Transform.

    Parametric Regression on the Grassmannian

    Get PDF
    We address the problem of fitting parametric curves on the Grassmann manifold for the purpose of intrinsic parametric regression. As customary in the literature, we start from the energy minimization formulation of linear least-squares in Euclidean spaces and generalize this concept to general nonflat Riemannian manifolds, following an optimal-control point of view. We then specialize this idea to the Grassmann manifold and demonstrate that it yields a simple, extensible and easy-to-implement solution to the parametric regression problem. In fact, it allows us to extend the basic geodesic model to (1) a time-warped variant and (2) cubic splines. We demonstrate the utility of the proposed solution on different vision problems, such as shape regression as a function of age, traffic-speed estimation and crowd-counting from surveillance video clips. Most notably, these problems can be conveniently solved within the same framework without any specifically-tailored steps along the processing pipeline.Comment: 14 pages, 11 figure

    Velocity estimation via registration-guided least-squares inversion

    Get PDF
    This paper introduces an iterative scheme for acoustic model inversion where the notion of proximity of two traces is not the usual least-squares distance, but instead involves registration as in image processing. Observed data are matched to predicted waveforms via piecewise-polynomial warpings, obtained by solving a nonconvex optimization problem in a multiscale fashion from low to high frequencies. This multiscale process requires defining low-frequency augmented signals in order to seed the frequency sweep at zero frequency. Custom adjoint sources are then defined from the warped waveforms. The proposed velocity updates are obtained as the migration of these adjoint sources, and cannot be interpreted as the negative gradient of any given objective function. The new method, referred to as RGLS, is successfully applied to a few scenarios of model velocity estimation in the transmission setting. We show that the new method can converge to the correct model in situations where conventional least-squares inversion suffers from cycle-skipping and converges to a spurious model.Comment: 20 pages, 13 figures, 1 tabl

    Modeling Non-Stationary Processes Through Dimension Expansion

    Get PDF
    In this paper, we propose a novel approach to modeling nonstationary spatial fields. The proposed method works by expanding the geographic plane over which these processes evolve into higher dimensional spaces, transforming and clarifying complex patterns in the physical plane. By combining aspects of multi-dimensional scaling, group lasso, and latent variables models, a dimensionally sparse projection is found in which the originally nonstationary field exhibits stationarity. Following a comparison with existing methods in a simulated environment, dimension expansion is studied on a classic test-bed data set historically used to study nonstationary models. Following this, we explore the use of dimension expansion in modeling air pollution in the United Kingdom, a process known to be strongly influenced by rural/urban effects, amongst others, which gives rise to a nonstationary field
    • …
    corecore