2,313 research outputs found

    Power Quality Enhancement in Hybrid Photovoltaic-Battery System based on three–Level Inverter associated with DC bus Voltage Control

    Get PDF
    This modest paper presents a study on the energy quality produced by a hybrid system consisting of a Photovoltaic (PV) power source connected to a battery. A three-level inverter was used in the system studied for the purpose of improving the quality of energy injected into the grid and decreasing the Total Harmonic Distortion (THD). A Maximum Power Point Tracking (MPPT) algorithm based on a Fuzzy Logic Controller (FLC) is used for the purpose of ensuring optimal production of photovoltaic energy. In addition, another FLC controller is used to ensure DC bus stabilization. The considered system was implemented in the Matlab /SimPowerSystems environment. The results show the effectiveness of the proposed inverter at three levels in improving the quality of energy injected from the system into the grid.Peer reviewedFinal Published versio

    Nonlinear Modeling and Identification of Unsteady Aerodynamics at Stall

    Get PDF
    For an aircraft with delta wing shape, aerodynamics in stall angles-of-attack at both low and high-subsonic Mach conditions is known to be unsteady and nonlinear in nature. In these conditions, the longitudinal aerodynamic loads depend on the history of angle-ofattack and side-slip. The classical method of using damping or acceleration aerodynamic derivatives for modeling the unsteady variation of coefficients is unsuitable. Hence, two novel approaches for modeling aerodynamic loads in these conditions are proposed in this thesis. The unsteady effect in stall conditions at low Mach number is reflected in forced oscillation wind tunnel tests as dependence of longitudinal loads on amplitude and frequency of sinusoidal angle-of-attack input. The variations in longitudinal loads are nonlinear as their power spectrum contains super-harmonics of input frequency. The approaches presented in literature are equivalent when these are reduced to equivalent linear transfer function formulation, while their nonlinear adaptations are semi-empirical or adhoc. Hence, Volterra Variational Modeling (VVM) is proposed as a systematic approach to capture the nonlinear nature of unsteady variations. The VVM is derived from Volterra series as a set of parametric differential equations of the so-called kernel states. The kernel-states have special harmonic input response properties which are leveraged to develop a systematic methodology to capture the nonlinear unsteady variations in pitching moment coefficient. VVM is shown to inherently reproduce the nonlinear features of unsteady aerodynamic loads like amplitude dependence of nonlinear variations, different effective time-scale for pitch-up and pitchdown motions and same number of super-harmonics as seen in the experimental data. Hence, it offers several advantages compared to all the modeling approaches in literature. The VVM is a powerful approach due to following features: (i) Mathematically rigorous structure, (ii) Physical interpretations of parameters, (iii) it facilitates linear analysis of the flight modes (iv) simple identification methodology using forced oscillation wind tunnel test data (v) open to innovations in model structure and estimation technique. These concepts are demonstrated for the Generic Tailless Aircraft and F16XL aircraft using comprehensive sets of wind tunnel test data . The unsteady phenomena at high sub-sonic Mach number is called AbruptWing Stall, and novel model called ”Bifurcational Model of Aerodynamic Asymmetry” is proposed for modeling it. It shown to be a topologically rich structure which can model the static hysteresis and unsteady variations in rolling moment coefficient versus the side-slip angle, in order to reproduce the effects of Abrupt Wing Stall on flight dynamics

    Development of a general purpose airborne simulator

    Get PDF
    Variable stability system development for General Purpose Airborne Simulator /GPAS

    Transformer modelling considering power losses using an inverse Jiles-Atherton approach

    Get PDF
    Power transformers are devices with non-linear behavior due to the saturation of the ferromagnetic core. When modelling such devices, the saturation effect must be taken into account because it greatly affects their performance and efficiency. In this paper, an electromagnetic model for power transformers is proposed and experimentally validated using an electrical T-model coupled with a reluctance network to model the magnetic part. The electrical circuit and the reluctance network are linked by two B–H approaches. The B–H relationships are modelled by the full hysteresis cycle based on the inverse Jiles-Atherton theory and by the initial magnetization curve. The results obtained with the inverse Jiles-Atherton theory model reproduce the magnetic core behavior with more accuracy than the one based on the initial magnetization curve, especially at low load conditions where saturation plays a more prominent role on the no-load current. The proposed model can be applied to other magnetic devices such as inductors for power electronic applications or electromechanical relays, among others.Peer ReviewedPostprint (published version

    POWER CONDITIONING UNIT FOR SMALL SCALE HYBRID PV-WIND GENERATION SYSTEM

    Get PDF
    Small-scale renewable energy systems are becoming increasingly popular due to soaring fuel prices and due to technological advancements which reduce the cost of manufacturing. Solar and wind energies, among other renewable energy sources, are the most available ones globally. The hybrid photovoltaic (PV) and wind power system has a higher capability to deliver continuous power with reduced energy storage requirements and therefore results in better utilization of power conversion and control equipment than either of the individual sources. Power conditioning units (p.c.u.) for such small-scale hybrid PV-wind generation systems have been proposed in this study. The system was connected to the grid, but it could also operate in standalone mode if the grid was unavailable. The system contains a local controller for every energy source and the grid inverter. Besides, it contains the supervisory controller. For the wind generator side, small-scale vertical axis wind turbines (VAWTs) are attractive due to their ability to capture wind from different directions without using a yaw. One difficulty with VAWTs is to prevent over-speeding and component over-loading at excessive wind velocities. The proposed local controller for the wind generator is based on the current and voltage measured on the dc side of the rectifier connected to the permanent magnet synchronous generator (PMSG). Maximum power point tracking (MPPT) control is provided in normal operation under the rated speed using a dc/dc boost converter. For high wind velocities, the suggested local controller controls the electric power in order to operate the turbine in the stall region. This high wind velocity control strategy attenuates the stress in the system while it smoothes the power generated. It is shown that the controller is able to stabilize the nonlinear system using an adaptive current feedback loop. Simulation and experimental results are presented. The PV generator side controller is designed to work in systems with multiple energy sources, such as those studied in this thesis. One of the most widely used methods to maximize the output PV power is the hill climbing technique. This study gives guidelines for designing both the perturbation magnitude and the time interval between consecutive perturbations for such a technique. These guidelines would improve the maximum power point tracking efficiency. According to these guidelines, a variable step MPPT algorithm with reduced power mode is designed and applied to the system. The algorithm is validated by simulation and experimental results. A single phase H-bridge inverter is proposed to supply the load and to connect the grid. Generally, a current controller injects active power with a controlled power factor and constant dc link voltage in the grid connected mode. However, in the standalone mode, it injects active power with constant ac output voltage and a power factor which depends on the load. The current controller for both modes is based on a newly developed peak current control (p.c.c.) with selective harmonic elimination. A design procedure has been proposed for the controller. Then, the method was demonstrated by simulation. The problem of the dc current injection to the grid has been investigated for such inverters. The causes of dc current injection are analyzed, and a measurement circuit is then proposed to control the inverter for dc current injection elimination. Characteristics of the proposed method are demonstrated, using simulation and experimental results. At the final stage of the study, a supervisory controller is demonstrated, which manages the different operating states of the system during starting, grid-connected and standalone modes. The operating states, designed for every mode, have been defined in such a hybrid model to allow stability and smooth transition between these states. The supervisory controller switches the system between the different modes and states according to the availability of the utility grid, renewable energy generators, the state of charge (SOC) of energy storage batteries, and the load. The p.c.u. including the supervisory controller has been verified in the different modes and states by simulation

    Advances in Control of Power Electronic Converters

    Get PDF
    This book proposes a list of contributions in the field of control of power electronics converters for different topologies: DC-DC, DC-AC and AC-DC. It particularly focuses on the use of different advanced control techniques with the aim of improving the performances, flexibility and efficiency in the context of several operation conditions. Sliding mode control, fuzzy logic based control, dead time compensation and optimal linear control are among the techniques developed in the special issue. Simulation and experimental results are provided by the authors to validate the proposed control strategies

    Design of strapdown gyroscopes for a dynamic environment Interim scientific report

    Get PDF
    Error analysis for single degree of freedom integrating gyro, and figure of merit relating gyro errors to orientation error of strapdown inertial reference syste

    Design and control technique for single phase bipolar H-bridge inverter connected to the grid

    Get PDF
    The power quality injected into the grid and the performance of the converter system depend on the quality of the inverter current control. This paper proposes a design and control technique for a photovoltaic inverter connected to the grid based on the digital pulse-width modulation (DSPWM) which can synchronise a sinusoidal output current with a grid voltage and control a power factor. The current injected must be sinusoidal with reduced harmonic distortion. The connected PV system is based on H-Bridge inverter controlled by bipolar PWM Switching. The current control technique and functional structure of this system are presented and simulated. Detailed analysis, Simulations results of output voltage and current waveform demonstrate the contribution of this approach to determinate the suitable control of the system. A digital design of a generator PWM using VHDL is proposed and implemented on an Xilinx FPGA and it has been validated with experimental results. As a result, the proposed inverter implementation is simple, and it becomes an attractive solution for low power grid connected applications
    • …
    corecore