59,638 research outputs found

    Channel, Phase Noise, and Frequency Offset in OFDM Systems: Joint Estimation, Data Detection, and Hybrid Cramer-Rao Lower Bound

    Full text link
    Oscillator phase noise (PHN) and carrier frequency offset (CFO) can adversely impact the performance of orthogonal frequency division multiplexing (OFDM) systems, since they can result in inter carrier interference and rotation of the signal constellation. In this paper, we propose an expectation conditional maximization (ECM) based algorithm for joint estimation of channel, PHN, and CFO in OFDM systems. We present the signal model for the estimation problem and derive the hybrid Cramer-Rao lower bound (HCRB) for the joint estimation problem. Next, we propose an iterative receiver based on an extended Kalman filter for joint data detection and PHN tracking. Numerical results show that, compared to existing algorithms, the performance of the proposed ECM-based estimator is closer to the derived HCRB and outperforms the existing estimation algorithms at moderate-to-high signal-to-noise ratio (SNR). In addition, the combined estimation algorithm and iterative receiver are more computationally efficient than existing algorithms and result in improved average uncoded and coded bit error rate (BER) performance

    Channel Estimation and Prediction Based Adaptive Wireless Communication Systems

    Get PDF
    Wireless channels are typically much more noisy than wired links and subjected to fading due to multipath propagation which result in ISI and hence high error rate. Adaptive modulation is a powerful technique to improve the tradeoff between spectral efficiency and Bit Error Rate (BER). In order to adjust the transmission rate, channel state information (CSI) is required at the transmitter side.In this paper the performance enhancement of using linear prediction along with channel estimation to track the channel variations and adaptive modulation were examined. The simulation results shows that the channel estimation is sufficient for low Doppler frequency shifts (<30 Hz), while channel prediction is much more suited at high Doppler shifts with same SNR and target BER=10-4. It was shown that the performance at higher Doppler frequency shifts (<30Hz) was improved by more than 2dB over channel estimation at target BER=10-4 and 32QAM constellation used

    One-Bit Algorithm Considerations for Sparse PMCW Radar

    Get PDF
    Phase Modulated Continuous Wave (PMCW) radar an emerging technology for autonomous cars. It is more flexible than the current frequency modulated systems, offering better detection resolution, interference mitigation, and future development opportunities. The issue preventing PMCW adoption is the need for high sample-rate analog to digital converters (ADCs). Due to device limits, a large increase in cost and power consumption occurs for every added resolution bit for a given sampling rate. This thesis explores radar detection techniques for few-bit and 1-bit ADC measurements. 1-bit quantization typically results in poor amplitude estimation, which can limit detections if the target signals are weak. Time Varying quantization Thresholds (TVTs) are a way to preserve that amplitude information. An existing few-bit Fast Iterative Shrinkage Thresholding Algorithm (FISTA) was adapted to use 1-bit TVT quantization. Three test scenarios compared the original FISTA using 1 and 2-bit quantization to the TVT approach. Tests included widely spaced targets, adjacent targets, and high dynamic range targets. Performance metrics included normalized mean squared error (NMSE) of target amplitude estimation and Receiver operating characteristic (ROC) curves for detection accuracy. Results showed the TVT implementation operated over the widest range of SNR values, had the lowest amplitude estimate NMSE at high SNR, and comparable NMSE with 2-bit FISTA at low SNR. There was an 84−93%84-93\% reduction in NMSE compared to 1-bit FISTA without TVTs. Few-bit FISTA had the best detection rates at specific SNR values, but was more sensitive to noise. AUC values averaged across the full SNR range for TVT FISTA were the most robust, measuring 13−46%13-46\% higher than 1-bit FISTA and 48−74%48-74\% higher than 2-bit FISTA. Advisor: Andrew Harm

    Channel, Phase Noise, and Frequency Offset in OFDM Systems: Joint Estimation, Data Detection, and Hybrid Cramer-Rao Lower Bound

    Get PDF
    Oscillator phase noise (PHN) and carrier frequency offset (CFO) can adversely impact the performance of orthogonal frequency division multiplexing (OFDM) systems, since they can result in inter carrier interference and rotation of the signal constellation. In this paper, we propose an expectation conditional maximization (ECM) based algorithm for joint estimation of channel, PHN, and CFO in OFDM systems. We present the signal model for the estimation problem and derive the hybrid Cramer-Rao lower bound (HCRB) for the joint estimation problem. Next, we propose an iterative receiver based on an extended Kalman filter for joint data detection and PHN tracking. Numerical results show that, compared to existing algorithms, the performance of the proposed ECM-based estimator is closer to the derived HCRB and outperforms the existing estimation algorithms at moderate-to-high signal-to-noise ratio (SNR). In addition, the combined estimation algorithm and iterative receiver are more computationally efficient than existing algorithms and result in improved average uncoded and coded bit error rate (BER) performance.ARC Discovery Projects Grant DP14010113

    Visualization on colour based flow vector of thermal image for movement detection during interactive session

    Get PDF
    Recently thermal imaging is exploited in applications such as motion and face detection. It has drawn attention many researchers to build such technology to improve lifestyle. This work proposed a technique to detect and identify a motion in sequence images for the application in security monitoring system or outdoor surveillance. Conventional system might cause false information with the present of shadow. Thus, methods employed in this work are Canny edge detector method, Lucas Kanade and Horn Shunck algorithms, to overcome the major problem when using thresholding method, which is only intensity or pixel magnitude is considered instead of relationships between the pixels. The results obtained could be observed in flow vector parameter and the segmentation colour based image for the time frame from 1 to 10 seconds. The visualization of both the parameters clarified the movement and changes of pixel intensity between two frames by the supportive colour segmentation, either in smooth or rough motion. Thus, this technique may contribute to others application such as biometrics, military system, and surveillance machine

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Analysis of GRACE range-rate residuals with focus on KBR instrument system noise

    Get PDF
    We investigate the post-fit range-rate residuals after the gravity field parameter estimation from the inter-satellite ranging data of the gravity recovery and climate experiment (GRACE) satellite mission. Of particular interest is the high-frequency spectrum (f gt 20 MHz) which is dominated by the microwave ranging system noise. Such analysis is carried out to understand the yet unsolved discrepancy between the predicted baseline errors and the observed ones. The analysis consists of two parts. First, we present the effects in the signal-to-noise ratio (SNRs) of the k-band ranging system. The SNRs are also affected by the moon intrusions into the star cameras field of view and magnetic torque rod currents in addition to the effects presented by Harvey et al. [2016]. Second, we analyze the range-rate residuals to study the effects of the KBR system noise. The range-rate residuals are dominated by the non-stationary errors in the high-frequency observations. These high-frequency errors in the range-rate residuals are found to be dependent on the temperature and effects of sun intrusion into the star cameras field of view reflected in the SNRs of the K-band phase observations
    • …
    corecore