87 research outputs found

    ICESTARS : integrated circuit/EM simulation and design technologies for advanced radio systems-on-chip

    Get PDF
    ICESTARS solved a series of critical issues in the currently available infrastructure for the design and simulation of new and highly-complex Radio Frequency (RF) front ends operating beyond 10 and up to 100 GHz. Future RF designs demand an increasing blend of analog and digital functionalities. The super and extremely high frequency (SHF, 3-30GHz, and EHF, 30-300GHz) ranges will be used to accomplish future demands for higher capacity channels. With todays frequency bands of approximately 1 to 3 GHz it is impossible to realize extremely high data transfer rates. Only a new generation of CAD and EDA tools will ensure the realization of complex nanoscale designs. It necessitates both new modeling approaches and new mathematical solution procedures for differential equations with largely differing time scales, analysis of coupled systems of DAEs (circuit equations) and PDEs (Maxwell equations for electromagnetic couplings) plus numerical simulations with mixed analog and digital signals. In ICESTARS new techniques and mathematical models working in highly integrated environments were developed to resolve this dilemma. The ICESTARS research area covered the three domains of RF design: (1) time-domain techniques, (2) frequency-domain techniques, and (3) EM analysis and coupled EM circuit analysis. The ICESTARS consortium comprised two industrial partners (NXP Semiconductors, Infineon Technologies AG), two SMEs (Magwel, AWR-APLAC) and five universities (Upper Austria, Cologne, Oulu, Wuppertal, Aalto), involving mathematicians, electronic engineers, and software engineers

    The Unified-FFT Method for Fast Solution of Integral Equations as Applied to Shielded-Domain Electromagnetics

    Get PDF
    Electromagnetic (EM) solvers are widely used within computer-aided design (CAD) to improve and ensure success of circuit designs. Unfortunately, due to the complexity of Maxwell\u27s equations, they are often computationally expensive. While considerable progress has been made in the realm of speed-enhanced EM solvers, these fast solvers generally achieve their results through methods that introduce additional error components by way of geometric approximations, sparse-matrix approximations, multilevel decomposition of interactions, and more. This work introduces the new method, Unified-FFT (UFFT). A derivative of method of moments, UFFT scales as O(N log N), and achieves fast analysis by the unique combination of FFT-enhanced matrix fill operations (MFO) with FFT-enhanced matrix solve operations (MSO). In this work, two versions of UFFT are developed, UFFT-Precorrected (UFFT-P) and UFFT-Grid Totalizing (UFFT-GT). UFFT-P uses precorrected FFT for MSO and allows the use of basis functions that do not conform to a regular grid. UFFT-GT uses conjugate gradient FFT for MSO and features the capability of reducing the error of the solution down to machine precision. The main contribution of UFFT-P is a fast solver, which utilizes FFT for both MFO and MSO. It is demonstrated in this work to not only provide simulation results for large problems considerably faster than state of the art commercial tools, but also to be capable of simulating geometries which are too complex for conventional simulation. In UFFT-P these benefits come at the expense of a minor penalty to accuracy. UFFT-GT contains further contributions as it demonstrates that such a fast solver can be accurate to numerical precision as compared to a full, direct analysis. It is shown to provide even more algorithmic efficiency and faster performance than UFFT-P. UFFT-GT makes an additional contribution in that it is developed not only for planar geometries, but also for the case of multilayered dielectrics and metallization. This functionality is particularly useful for multi-layered printed circuit boards (PCBs) and integrated circuits (ICs). Finally, UFFT-GT contributes a 3D planar solver, which allows for current to be discretized in the z-direction. This allows for similar fast and accurate simulation with the inclusion of some 3D features, such as vias connecting metallization planes

    Solving Electrically Very Large Transient Electromagnetic Problems Using Plane-Wave Time-Domain Algorithms.

    Full text link
    The marching-on-in-time (MOT)-based time domain integral equation solvers provide an appealing avenue for solving transient electromagnetic scattering/radiation problems. These state-of-the-art solvers are high-order accurate, rapidly converging and low-/high-frequency stable. Moreover, their computational efficiencies can be significantly improved by accelerators such as the multilevel plane-wave time-domain (PWTD) algorithm. However, practical transient electromagnetic problems involving millions of spatial unknowns and thousands of time steps were barely solved by PWTD-accelerated MOT solvers. This is due to the lack of (i) an efficient parallelization scheme for PWTD’s heterogeneous structure on modern computing platforms, and (ii) a temporal/angular/spatial adaptive PWTD that further improves the computational efficiency. The contributions of this work are as follows: First, a provably scalable parallelization scheme for the PWTD algorithm is developed. The proposed scheme scales well on thousands of CPU processors upon hierarchically partitioning the workloads in spatial, angular and temporal dimensions. The proposed scheme is adopted to time domain surface/volume integral equations (TD-SIE/TD-VIE) solvers for analyzing transient scattering from large and complex-shaped conducting/dielectric objects involving ten million/tens of millions of spatial unknowns. In addition, we developed a single/multiple graphics processing units (GPU) implementation of the PWTD algorithm that achieves at least one order of magnitude speedups compared to serial CPU implementations. Second, a wavelet compression scheme based on local cosine bases (LCBs) that exploits the sparsity in the temporal dimension is developed. All PWTD operations are performed in the wavelet domain with reduced computational complexity. The resultant wavelet-enhanced TD-SIE solver is capable of analyzing transient scattering from smooth quasi-planar conducting objects spanning well over one hundred wavelengths.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/113642/1/liuyangz_1.pd

    The Sixth Copper Mountain Conference on Multigrid Methods, part 1

    Get PDF
    The Sixth Copper Mountain Conference on Multigrid Methods was held on 4-9 Apr. 1993, at Copper Mountain, CO. This book is a collection of many of the papers presented at the conference and as such represents the conference proceedings. NASA LaRC graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection clearly shows its rapid trend to further diversity and depth

    Krylov's methods in function space for waveform relaxation.

    Get PDF
    by Wai-Shing Luk.Thesis (Ph.D.)--Chinese University of Hong Kong, 1996.Includes bibliographical references (leaves 104-113).Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Functional Extension of Iterative Methods --- p.2Chapter 1.2 --- Applications in Circuit Simulation --- p.2Chapter 1.3 --- Multigrid Acceleration --- p.3Chapter 1.4 --- Why Hilbert Space? --- p.4Chapter 1.5 --- Parallel Implementation --- p.5Chapter 1.6 --- Domain Decomposition --- p.5Chapter 1.7 --- Contributions of This Thesis --- p.6Chapter 1.8 --- Outlines of the Thesis --- p.7Chapter 2 --- Waveform Relaxation Methods --- p.9Chapter 2.1 --- Basic Idea --- p.10Chapter 2.2 --- Linear Operators between Banach Spaces --- p.14Chapter 2.3 --- Waveform Relaxation Operators for ODE's --- p.16Chapter 2.4 --- Convergence Analysis --- p.19Chapter 2.4.1 --- Continuous-time Convergence Analysis --- p.20Chapter 2.4.2 --- Discrete-time Convergence Analysis --- p.21Chapter 2.5 --- Further references --- p.24Chapter 3 --- Waveform Krylov Subspace Methods --- p.25Chapter 3.1 --- Overview of Krylov Subspace Methods --- p.26Chapter 3.2 --- Krylov Subspace methods in Hilbert Space --- p.30Chapter 3.3 --- Waveform Krylov Subspace Methods --- p.31Chapter 3.4 --- Adjoint Operator for WBiCG and WQMR --- p.33Chapter 3.5 --- Numerical Experiments --- p.35Chapter 3.5.1 --- Test Circuits --- p.36Chapter 3.5.2 --- Unstructured Grid Problem --- p.39Chapter 4 --- Parallel Implementation Issues --- p.50Chapter 4.1 --- DECmpp 12000/Sx Computer and HPF --- p.50Chapter 4.2 --- Data Mapping Strategy --- p.55Chapter 4.3 --- Sparse Matrix Format --- p.55Chapter 4.4 --- Graph Coloring for Unstructured Grid Problems --- p.57Chapter 5 --- The Use of Inexact ODE Solver in Waveform Methods --- p.61Chapter 5.1 --- Inexact ODE Solver for Waveform Relaxation --- p.62Chapter 5.1.1 --- Convergence Analysis --- p.63Chapter 5.2 --- Inexact ODE Solver for Waveform Krylov Subspace Methods --- p.65Chapter 5.3 --- Experimental Results --- p.68Chapter 5.4 --- Concluding Remarks --- p.72Chapter 6 --- Domain Decomposition Technique --- p.80Chapter 6.1 --- Introduction --- p.80Chapter 6.2 --- Overlapped Schwarz Methods --- p.81Chapter 6.3 --- Numerical Experiments --- p.83Chapter 6.3.1 --- Delay Circuit --- p.83Chapter 6.3.2 --- Unstructured Grid Problem --- p.86Chapter 7 --- Conclusions --- p.90Chapter 7.1 --- Summary --- p.90Chapter 7.2 --- Future Works --- p.92Chapter A --- Pseudo Codes for Waveform Krylov Subspace Methods --- p.94Chapter B --- Overview of Recursive Spectral Bisection Method --- p.101Bibliography --- p.10

    Modeling and Simulation in Engineering

    Get PDF
    The general aim of this book is to present selected chapters of the following types: chapters with more focus on modeling with some necessary simulation details and chapters with less focus on modeling but with more simulation details. This book contains eleven chapters divided into two sections: Modeling in Continuum Mechanics and Modeling in Electronics and Engineering. We hope our book entitled "Modeling and Simulation in Engineering - Selected Problems" will serve as a useful reference to students, scientists, and engineers

    Physics-Based Modeling of Power System Components for the Evaluation of Low-Frequency Radiated Electromagnetic Fields

    Get PDF
    The low-frequency electromagnetic compatibility (EMC) is an increasingly important aspect in the design of practical systems to ensure the functional safety and reliability of complex products. The opportunities for using numerical techniques to predict and analyze system’s EMC are therefore of considerable interest in many industries. As the first phase of study, a proper model, including all the details of the component, was required. Therefore, the advances in EMC modeling were studied with classifying analytical and numerical models. The selected model was finite element (FE) modeling, coupled with the distributed network method, to generate the model of the converter’s components and obtain the frequency behavioral model of the converter. The method has the ability to reveal the behavior of parasitic elements and higher resonances, which have critical impacts in studying EMI problems. For the EMC and signature studies of the machine drives, the equivalent source modeling was studied. Considering the details of the multi-machine environment, including actual models, some innovation in equivalent source modeling was performed to decrease the simulation time dramatically. Several models were designed in this study and the voltage current cube model and wire model have the best result. The GA-based PSO method is used as the optimization process. Superposition and suppression of the fields in coupling the components were also studied and verified. The simulation time of the equivalent model is 80-100 times lower than the detailed model. All tests were verified experimentally. As the application of EMC and signature study, the fault diagnosis and condition monitoring of an induction motor drive was developed using radiated fields. In addition to experimental tests, the 3DFE analysis was coupled with circuit-based software to implement the incipient fault cases. The identification was implemented using ANN for seventy various faulty cases. The simulation results were verified experimentally. Finally, the identification of the types of power components were implemented. The results show that it is possible to identify the type of components, as well as the faulty components, by comparing the amplitudes of their stray field harmonics. The identification using the stray fields is nondestructive and can be used for the setups that cannot go offline and be dismantle

    Wireless Sensors and Actuators for Structural Health Monitoring of Fiber Composite Materials

    Get PDF
    This work evaluates and investigates the wireless generation and detection of Lamb-waves on fiber-reinforced materials using surface applied or embedded piezo elements. The general target is to achieve wireless systems or sensor networks for Structural Health Monitoring (SHM), a type of Non-Destructive-Evaluation (NDE). In this sense, a fully wireless measurement system that achieves power transmission implementing inductive coils is reported. This system allows a reduction of total system weight as well as better integration in the structure. A great concern is the characteristics of the material, in which the system is integrated, because the properties can have a direct impact on the strength of the magnetic field. Carbon-Fiber-Reinforced-Polymer (CFRP) is known to behave as an electrical conductor, shielding radio waves with increasing worse effects at higher frequencies. Due to the need of high power and voltage, interest is raised to evaluate the operation of piezo as actuators at the lower frequency ranges. To this end, actuating occurs at the International Scientific and Medical (ISM) band of 125 kHz or low-frequency (LF) range. The feasibility of such system is evaluated extensively in this work. Direct excitation, is done by combining the actuator bonded to the surface or embedded in the material with an inductive LF coil and setting the circuit in resonance. A more controlled possibility, also explored, is the use of electronics to generate a Hanning-windowed-sine to excite the PWAS in a narrow spectrum. In this case, only wireless power is transmitted to the actuator node, and this lastly implements a Piezo-driver to independently excite Lamb-waves. Sensing and data transfer, on the other hand, is done using the high-frequency (HF) 13.56 MHz. The HF range covers the requirements of faster sampling rate and lower energy content. A re-tuning of the antenna coils is performed to obtain better transmission qualities when the system is implemented in CFRP. Several quasi-isotropic (QI) CFRP plates with sensor and actuator nodes were made to measure the quality of transmission and the necessary energy to stimulate the actuator-sensor system. In order to produce baselines, measurements are prepared from a healthy plate under specific temperature and humidity conditions. The signals are evaluated to verify the functionality in the presence of defects. The measurements demonstrate that it is possible to wirelessly generate Lamb-waves while early results show the feasibility to determine the presence of structural failure. For instance, progress has been achieved detecting the presence of a failure in the form of drilled holes introduced to the structure. This work shows a complete set of experimental results of different sensor/-actuator nodes
    • …
    corecore