6,363 research outputs found

    Combining vocal tract length normalization with hierarchial linear transformations

    Get PDF
    Recent research has demonstrated the effectiveness of vocal tract length normalization (VTLN) as a rapid adaptation technique for statistical parametric speech synthesis. VTLN produces speech with naturalness preferable to that of MLLR-based adaptation techniques, being much closer in quality to that generated by the original av-erage voice model. However with only a single parameter, VTLN captures very few speaker specific characteristics when compared to linear transform based adaptation techniques. This paper pro-poses that the merits of VTLN can be combined with those of linear transform based adaptation in a hierarchial Bayesian frame-work, where VTLN is used as the prior information. A novel tech-nique for propagating the gender information from the VTLN prior through constrained structural maximum a posteriori linear regres-sion (CSMAPLR) adaptation is presented. Experiments show that the resulting transformation has improved speech quality with better naturalness, intelligibility and improved speaker similarity. Index Terms — Statistical parametric speech synthesis, hidden Markov models, speaker adaptation, vocal tract length normaliza-tion, constrained structural maximum a posteriori linear regression 1

    Efficient Invariant Features for Sensor Variability Compensation in Speaker Recognition

    Get PDF
    In this paper, we investigate the use of invariant features for speaker recognition. Owing to their characteristics, these features are introduced to cope with the difficult and challenging problem of sensor variability and the source of performance degradation inherent in speaker recognition systems. Our experiments show: (1) the effectiveness of these features in match cases; (2) the benefit of combining these features with the mel frequency cepstral coefficients to exploit their discrimination power under uncontrolled conditions (mismatch cases). Consequently, the proposed invariant features result in a performance improvement as demonstrated by a reduction in the equal error rate and the minimum decision cost function compared to the GMM-UBM speaker recognition systems based on MFCC features

    Speaker Normalization Using Cortical Strip Maps: A Neural Model for Steady State vowel Categorization

    Full text link
    Auditory signals of speech are speaker-dependent, but representations of language meaning are speaker-independent. The transformation from speaker-dependent to speaker-independent language representations enables speech to be learned and understood from different speakers. A neural model is presented that performs speaker normalization to generate a pitch-independent representation of speech sounds, while also preserving information about speaker identity. This speaker-invariant representation is categorized into unitized speech items, which input to sequential working memories whose distributed patterns can be categorized, or chunked, into syllable and word representations. The proposed model fits into an emerging model of auditory streaming and speech categorization. The auditory streaming and speaker normalization parts of the model both use multiple strip representations and asymmetric competitive circuits, thereby suggesting that these two circuits arose from similar neural designs. The normalized speech items are rapidly categorized and stably remembered by Adaptive Resonance Theory circuits. Simulations use synthesized steady-state vowels from the Peterson and Barney [J. Acoust. Soc. Am. 24, 175-184 (1952)] vowel database and achieve accuracy rates similar to those achieved by human listeners. These results are compared to behavioral data and other speaker normalization models.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Time and information in perceptual adaptation to speech

    Get PDF
    Presubmission manuscript and supplementary files (stimuli, stimulus presentation code, data, data analysis code).Perceptual adaptation to a talker enables listeners to efficiently resolve the many-to-many mapping between variable speech acoustics and abstract linguistic representations. However, models of speech perception have not delved into the variety or the quantity of information necessary for successful adaptation, nor how adaptation unfolds over time. In three experiments using speeded classification of spoken words, we explored how the quantity (duration), quality (phonetic detail), and temporal continuity of talker-specific context contribute to facilitating perceptual adaptation to speech. In single- and mixed-talker conditions, listeners identified phonetically-confusable target words in isolation or preceded by carrier phrases of varying lengths and phonetic content, spoken by the same talker as the target word. Word identification was always slower in mixed-talker conditions than single-talker ones. However, interference from talker variability decreased as the duration of preceding speech increased but was not affected by the amount of preceding talker-specific phonetic information. Furthermore, efficiency gains from adaptation depended on temporal continuity between preceding speech and the target word. These results suggest that perceptual adaptation to speech may be understood via models of auditory streaming, where perceptual continuity of an auditory object (e.g., a talker) facilitates allocation of attentional resources, resulting in more efficient perceptual processing.NIH NIDCD (R03DC014045
    corecore