2,415 research outputs found

    The Eukaryotic Promoter Database EPD: the impact of in silico primer extension

    Get PDF
    The Eukaryotic Promoter Database (EPD) is an annotated non‐redundant collection of eukaryotic POL II promoters, experimentally defined by a transcription start site (TSS). There may be multiple promoter entries for a single gene. The underlying experimental evidence comes from journal articles and, starting from release 73, from 5â€Č ESTs of full‐length cDNA clones used for so‐called in silico primer extension. Access to promoter sequences is provided by pointers to TSS positions in nucleotide sequence entries. The annotation part of an EPD entry includes a description of the type and source of the initiation site mapping data, links to other biological databases and bibliographic references. EPD is structured in a way that facilitates dynamic extraction of biologically meaningful promoter subsets for comparative sequence analysis. Web‐based interfaces have been developed that enable the user to view EPD entries in different formats, to select and extract promoter sequences according to a variety of criteria and to navigate to related databases exploiting different cross‐references. Tools for analysing sequence motifs around TSSs defined in EPD are provided by the signal search analysis server. EPD can be accessed at http://www.epd. isb‐sib.c

    A Conserved GA Element in TATA-Less RNA Polymerase II Promoters

    Get PDF
    Initiation of RNA polymerase (Pol) II transcription requires assembly of the pre-initiation complex (PIC) at the promoter. In the classical view, PIC assembly starts with binding of the TATA box-binding protein (TBP) to the TATA box. However, a TATA box occurs in only 15% of promoters in the yeast Saccharomyces cerevisiae, posing the question how most yeast promoters nucleate PIC assembly. Here we show that one third of all yeast promoters contain a novel conserved DNA element, the GA element (GAE), that generally does not co-occur with the TATA box. The distance of the GAE to the transcription start site (TSS) resembles the distance of the TATA box to the TSS. The TATA-less TMT1 core promoter contains a GAE, recruits TBP, and supports formation of a TBP-TFIIB-DNA-complex. Mutation of the promoter region surrounding the GAE abolishes transcription in vivo and in vitro. A 32-nucleotide promoter region containing the GAE can functionally substitute for the TATA box in a TATA-containing promoter. This identifies the GAE as a conserved promoter element in TATA-less promoters

    Differentiation of core promoter architecture between plants and mammals revealed by LDSS analysis

    Get PDF
    Mammalian promoters are categorized into TATA and CpG-related groups, and they have complementary roles associated with differentiated transcriptional characteristics. While the TATA box is also found in plant promoters, it is not known if CpG-type promoters exist in plants. Plant promoters contain Y Patches (pyrimidine patches) in the core promoter region, and the ubiquity of these beyond higher plants is not understood as well. Sets of promoter sequences were utilized for the analysis of local distribution of short sequences (LDSS), and approximately one thousand octamer sequences have been identified as promoter constituents from Arabidopsis, rice, human and mouse, respectively. Based on their localization profiles, the identified octamer sequences were classified into several major groups, REG (Regulatory Element Group), TATA box, Inr (Initiator), Kozak, CpG and Y Patch. Comparison of the four species has revealed three categories: (i) shared groups found in both plants and mammals (TATA box), (ii) common groups found in both kingdoms but the utilized sequence is differentiated (REG, Inr and Kozak) and (iii) specific groups found in either plants or mammals (CpG and Y Patch). Our comparative LDSS analysis has identified conservation and differentiation of promoter architectures between higher plants and mammals

    The features of Drosophila core promoters revealed by statistical analysis

    Get PDF
    BACKGROUND: Experimental investigation of transcription is still a very labor- and time-consuming process. Only a few transcription initiation scenarios have been studied in detail. The mechanism of interaction between basal machinery and promoter, in particular core promoter elements, is not known for the majority of identified promoters. In this study, we reveal various transcription initiation mechanisms by statistical analysis of 3393 nonredundant Drosophila promoters. RESULTS: Using Drosophila-specific position-weight matrices, we identified promoters containing TATA box, Initiator, Downstream Promoter Element (DPE), and Motif Ten Element (MTE), as well as core elements discovered in Human (TFIIB Recognition Element (BRE) and Downstream Core Element (DCE)). Promoters utilizing known synergetic combinations of two core elements (TATA_Inr, Inr_MTE, Inr_DPE, and DPE_MTE) were identified. We also establish the existence of promoters with potentially novel synergetic combinations: TATA_DPE and TATA_MTE. Our analysis revealed several motifs with the features of promoter elements, including possible novel core promoter element(s). Comparison of Human and Drosophila showed consistent percentages of promoters with TATA, Inr, DPE, and synergetic combinations thereof, as well as most of the same functional and mutual positions of the core elements. No statistical evidence of MTE utilization in Human was found. Distinct nucleosome positioning in particular promoter classes was revealed. CONCLUSION: We present lists of promoters that potentially utilize the aforementioned elements/combinations. The number of these promoters is two orders of magnitude larger than the number of promoters in which transcription initiation was experimentally studied. The sequences are ready to be experimentally tested or used for further statistical analysis. The developed approach may be utilized for other species
    • 

    corecore