7,933 research outputs found

    Analytical and comparative study of using a CNC machine spindle motor power and infrared technology for the design of a cutting tool condition monitoring system

    Get PDF
    This paper outlines a comparative study to compare between using the power of the spindle and the infrared images of the cutting tool to design a condition monitoring system. This paper compares the two technologies for the development of a tool condition monitoring for milling processes. Wavelet analysis is used to process the power signal. Image gradient and Wavelet analyses are used to process the infrared images. The results show that the image gradient and wavelet analysis are powerful image processing techniques in detecting tool wear. The power of the motor of the spindle has shown less sensitivity to tool conditions in this case when compared to infrared thermography

    Experimental study of thin part vibration modes in machining

    Get PDF
    The machining of thin walls generally generates milling chatter, that damage surface roughness and manufacturing tools. Stability lobes which include natural frequencies are successful in case of tool chatter. When milling thin webs models are less adequate, because the interaction with the tool disrupts the behaviour of the work piece. The modal approach generally used for stability charts may be not adequate enough because of neglecting the tool and the work piece contact. This paper presents the experimental phase of a work aiming at analyse vibration modes of a thin web during machining. A finite element calculation shows the influence of a contact on natural frequencies of the part. For a better investigation, field displacements of the work piece are analysed. This work eventually aims at better knowledge of the contact between the tool and the part to improve the hardiness of models

    Smart Sensor Monitoring in Machining of Difficult-to-cut Materials

    Get PDF
    The research activities presented in this thesis are focused on the development of smart sensor monitoring procedures applied to diverse machining processes with particular reference to the machining of difficult-to-cut materials. This work will describe the whole smart sensor monitoring procedure starting from the configuration of the multiple sensor monitoring system for each specific application and proceeding with the methodologies for sensor signal detection and analysis aimed at the extraction of signal features to feed to intelligent decision-making systems based on artificial neural networks. The final aim is to perform tool condition monitoring in advanced machining processes in terms of tool wear diagnosis and forecast, in the perspective of zero defect manufacturing and green technologies. The work has been addressed within the framework of the national MIUR PON research project CAPRI, acronym for “Carrello per atterraggio con attuazione intelligente” (Landing Gear with Intelligent Actuation), and the research project STEP FAR, acronym for “Sviluppo di materiali e Tecnologie Ecocompatibili, di Processi di Foratura, taglio e di Assemblaggio Robotizzato” (Development of eco-compatible materials and technologies for robotised drilling and assembly processes). Both projects are sponsored by DAC, the Campania Technological Aerospace District, and involve two aerospace industries, Magnaghi Aeronautica S.p.A. and Leonardo S.p.A., respectively. Due to the industrial framework in which the projects were developed and taking advantage of the support from the industrial partners, the project activities have been carried out with the aim to contribute to the scientific research in the field of machining process monitoring as well as to promote the industrial applicability of the results. The thesis was structured in order to illustrate all the methodologies, the experimental tests and the results obtained from the research activities. It begins with an introduction to “Sensor monitoring of machining processes” (Chapter 2) with particular attention to the main sensor monitoring applications and the types of sensors which are employed in machining. The key methods for advanced sensor signal processing, including the implementation of sensor fusion technology, are discussed in details as they represent the basic input for cognitive decision-making systems construction. The chapter finally presents a brief discussion on cloud-based manufacturing which will represent one of the future developments of this research work. Chapters 3 and 4 illustrate the case studies of machining process sensor monitoring investigated in the research work. Within the CAPRI project, the feasibility of the dry turning process of Ti6Al4V alloy (Chapter 3) was studied with particular attention to the optimization of the machining parameters avoiding the use of coolant fluids. Since very rapid tool wear is experienced during dry machining of Titanium alloys, the multiple sensor monitoring system was used in order to develop a methodology based on a smart system for on line tool wear detection in terms of maximum flank wear land. Within the STEP FAR project, the drilling process of carbon fibre reinforced (CFRP) composite materials was studied using diverse experimental set-ups. Regarding the tools, three different types of drill bit were employed, including traditional as well as innovative geometry ones. Concerning the investigated materials, two different types of stack configurations were employed, namely CFRP/CFRP stacks and hybrid Al/CFRP stacks. Consequently, the machining parameters for each experimental campaign were varied, and also the methods for signal analysis were changed to verify the performance of the different methodologies. Finally, for each case different neural network configurations were investigated for cognitive-based decision making. First of all, the applicability of the system was tested in order to perform tool wear diagnosis and forecast. Then, the discussion proceeds with a further aim of the research work, which is the reduction of the number of selected sensor signal features, in order to improve the performance of the cognitive decision-making system, simplify modelling and facilitate the implementation of these methodologies in a cloud manufacturing approach to tool condition monitoring. Sensor fusion methodologies were applied to the extracted and selected sensor signal features in the perspective of feature reduction with the purpose to implement these procedures for big data analytics within the Industry 4.0 framework. In conclusion, the positive impact of the proposed tool condition monitoring methodologies based on multiple sensor signal acquisition and processing is illustrated, with particular reference to the reliable assessment of tool state in order to avoid too early or too late cutting tool substitution that negatively affect machining time and cost

    On-Line Workpiece Hardness Monitoring in Stone Machining

    Get PDF
    The application of four types of process signals in the indirect on-line monitoring of stone hardness has been analysed in this paper. Cutting forces, servomotor currents, vibration and acoustic emission signals were measured during the drilling of three types of stones characterised by different hardness and heterogeneity values. A group of features were extracted from each signal from the time and frequency domain. Their capacity to correctly classify stone hardness was analysed using an artificial neural network classifier. Stone samples were drilled with new drill bits and drill bits worn to three different wear levels in order to analyse the influence of tool wear on the hardness classification process. Nine combinations of cutting parameters were applied for each drill wear level and stone type. Features extracted from the vibration signals obtained the best results in the stone hardness classification. The results indicate their potential industrial application, since they have achieved a high classification precision regardless of the drill bit wear level

    Tool wear monitoring in turning using fused data sets of calibrated acoustic emission and vibration

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The main aim of this research is to develop an on-line tool wear condition monitoring intelligent system for single-point turning operations. This is to provide accurate and reliable information on the different states of tool wear. Calibrated acoustic emission and vibration techniques were implemented to monitor the progress of wear on carbide tool tips. Previous research has shown that acoustic emission (AE) is sensitive to tool wear. However, AE, as a monitoring technique, is still not widely adopted by industry. This is because it is as yet impossible to achieve repeatable measurements of AE. The variability is due to inconsistent coupling of the sensor with structures and the fact that the tool structure may have different geometry and material property. Calibration is therefore required so that the extent of variability becomes quantifiable, and hence accounted for or removed altogether. Proper calibration needs a well-defined and repeatable AE source. In this research, various artificial sources were reviewed in order to assess their suitability as an AE calibration source for the single-point machining process. Two artificial sources were selected for studying in detail. These are an air jet and a pulsed laser; the former produces continuous-type AE and the latter burst type AE. Since the air jet source has a power spectrum resembling closely the AE produced from single-point machining and since it is readily available in a machine shop, not to mention its relative safety compared to laser, an air-jet source is a more appealing choice. The calibration procedure involves setting up an air jet at a fixed stand-off distance from the top rake of the tool tip, applying in sequence a set of increasing pressures and measuring the corresponding AE. It was found that the root-mean-square value of the AE obtained is linearly proportional to the pressure applied. Thus, irrespective of the layout of the sensor and AE source in a tool structure, AE can be expressed in terms of the common currency of 'pressure' using the calibration curve produced for that particular layout. Tool wear stages can then be defined in terms of the 'pressure' levels. In order to improve the robustness of the monitoring system, in addition to AE, vibration information is also used. In this case, the acceleration at the tool tip in the tangential and feed directions is measured. The coherence function between these two signals is then computed. The coherence is a function of the vibration frequency and has a value ranging from 0 to 1, corresponding to no correlation and full correlation respectively between the two acceleration signals. The coherence function method is an attempt to provide a solution, which is relatively insensitive to the dynamics and the process variables except tool wear. Three features were identified to be sensitive to tool wear and they are; AErms, and the coherence function of the acceleration at natural frequency (2.5-5.5 kHz) of the tool holder and at high frequency end (18-25kHz) respectively. A belief network, based on Bayes' rule, was created providing fusion of data from AE and vibration for tool wear classification. The conditional probabilities required for the belief network to operate were established from examples. These examples were presented to the belief network as a file of cases. The file contains the three features mentioned earlier, together with cutting conditions and the tool wear states. Half of the data in this file was used for training while the other half was used for testing the network. The performance of the network gave an overall classification error rate of 1.6 % with the WD acoustic emission sensor and an error rate of 4.9 % with the R30 acoustic emission sensor.Funding was obtained from The Royal Thai Government, the Petroleum Authority of Thailand and King Mongkut's University of Technology Thonburi (KMUTT
    • …
    corecore